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 A feedlot growing and finishing experiment evaluated the effect of including 

pine-sourced biochar at 0.8 (grower) and 1.0% (finisher) of diet DM on steer 

performance, carcass characteristics, and greenhouse gas (GHG) production (Exp 1). 

Two nutrient mass balance experiments were conducted during winter and summer 

seasons to evaluate the effect of spreading unprocessed red cedar biochar on the feedlot 

pen surface on manure nutrient capture and cattle performance (Exp 2). In Exp. 1, the 

inclusion of biochar in the growing diet did not impact steer performance. The inclusion 

of biochar in the finishing diet significantly reduced intake and gain, resulting in a lighter 

and leaner carcass compared to control. Emissions of CH4 and CO2 were not affected by 

biochar inclusion in the growing or finishing period. In Exp. 2, the winter phase 

(December to June) evaluated three treatments (5 pens/treatment, 10 steers/pen): biochar 

spread to pen surface, hydrated lime spread to pen surface, and negative control. There 

were no differences in nutrient (N and P) intake, calculated nutrient retention, or 

excretion. Steer performance and carcass traits were not impacted by pen treatment in 

winter phase. The summer phase (June to November) evaluated biochar spread to pen 

surface against negative control (5 pens/treatment, 8 steers/pen). There were no 



 iii 

differences in N and P intake or calculated excretion, however, calculated nutrient 

retention was significantly greater for steers on biochar-amended pens. Increased nutrient 

retention by the animal resulted in increased gain, improved feed efficiency, and a 

heavier hot carcass weight for steers on biochar treatment. In both winter and summer 

phases, biochar addition to the feedlot pen surface increased N concentration in manure 

but did not result in increased kg of N or P removed from feedlot pens due to a lesser 

quantity of manure removed from biochar-amended pens.  
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Introduction   

 The production of greenhouse gases (GHG) and their contribution to climate 

change are of substantial environmental concern. Carbon dioxide (CO2), methane (CH4), 

and nitrous oxide (N2O) are the three significant gases that contribute to global warming 

and are produced via natural sources (e.g. wetlands) and anthropogenic activity (e.g. 

fossil fuel combustion). The two largest contributions to anthropogenic GHG production 

come from the petroleum and natural gas sectors and enteric fermentation from 

domesticated ruminant livestock (NASEM, 2018). The rumen allows cattle the unique 

ability to digest and convert plant products (e.g. cellulose), deemed indigestible by 

humans and monogastric animals, into high-quality protein. Enteric CH4 production plays 

a vital role in ruminal fermentation; however, it also represents an energetic loss for the 

animal (Johnson and Johnson, 1995) and contributes to global warming.  

Beef feedlot finishing diets that are typical for the U.S. incorporate high 

concentrations of N and P in the feed, with approximately 12 and 15% of fed N and P, 

respectively, being retained by the animal (Kissinger et al., 2007). The remaining N and P 

are excreted in the manure, where the opportunity for manure N loss via ammonia (NH3) 

volatilization from the feedlot pen surface is a risk to the environment through N2O 

formation and lowers the value of manure as a fertilizer. Although modern beef 

production exhibits a 16% decrease in the carbon footprint of beef compared to the 1970s 

(Capper, 2011), the beef industry has been further challenged to reduce its contribution to 

GHG emissions. 

 One proposed method to combat gaseous emissions from ruminal fermentation 

(CH4) and manure N loss (NH3 volatilization) is a product called biochar. Biochar is 
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produced from burning organic matter (e.g. forestry byproducts) at high temperatures in 

the absence of oxygen (Hansen et al., 2012), resulting in a carbonized charcoal product. 

The porous nature and large surface area of biochar has made it a versatile product used 

in agricultural and environmental applications. When used as a soil amendment, biochar 

has shown to improve crop yields and soil fertility (Ding et al., 2016). The addition of 

biochar to livestock manure has resulted in reductions of N2O emission, potentially due to 

the sorptive capacity of biochar, reducing the availability of N for N2O formation 

(Agyarko-Mintah et al., 2017; Kammann et al., 2015). When biochar is included in the 

diet of cattle, recent literature has shown reductions in enteric CH4 production. The 

literature review presented in Chapter I will outline the climate impact of cattle and 

manure on GHG emissions and potential mitigation strategies. Chapter II will evaluate 

the effectiveness of including biochar in the diet of cattle to reduce enteric CH4 

production, and Chapter III will discuss the effectiveness of biochar as a feedlot pen 

surface amendment on improving manure N capture and reducing N loss via ammonia 

volatilization.  
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CHAPTER I. Review of the Literature 

Anthropogenic greenhouse gas production  

Greenhouse gases (GHGs) are detrimental to the environment as they trap heat in 

the atmosphere, potentially resulting in climate change. In addition, GHGs are a public 

safety concern, where an over-concentration of GHGs can result in reduced air quality, 

leading to pollution and smog and ultimately contributing to respiratory disease. There 

are three significant gases that contribute to GHG emissions: including carbon dioxide 

(CO2), methane (CH4), and nitrous oxide (N2O) (Hristov et al., 2013). The production of 

GHGs and their impact on climate change is divided into two categories: anthropogenic 

and natural GHG production. Anthropogenic refers to any GHGs produced by or 

associated with human activity, while natural refers to the natural cycles and processes of 

the Earth.  

A 2019 overview of the U.S. GHG emissions caused by human activities reported 

that of these three gases, CO2 accounted for approximately 80% of all emissions, CH4 for 

10%, N2O for 7%, and the remaining 3% of U.S. GHG emission came from fluorinated 

gases (emitted during various industrial processes; USEPA, 2021). Carbon dioxide is the 

primary GHG emitted through human activity and is predominantly produced through the 

burning of fossil fuels for energy and transportation. Methane is produced during the 

manufacturing and transport of natural gas and oil, and various other agricultural 

practices such as livestock production and manure management (USEPA, 2021). The two 

largest sources of anthropogenic CH4 emission in the USA are enteric fermentation from 

domesticated ruminant animals and the petroleum and natural gas sectors (NASEM, 

2018). A GHG inventory of the USA in 2015 reported that of total CH4 emissions, enteric 

fermentation from domesticated livestock equated to 25%, or 6.6 Tg, of CH4 emission, 
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natural gas equated to 25%, or 6.5 Tg, of CH4, and manure management and coal mining 

each contributed an additional 10% of CH4 emission, or 2.65 and 2.69 Tg, respectively 

(USEPA, 2021). In addition to anthropogenic activity, CH4 is emitted by natural sources 

such as wetlands, which are estimated to contribute 40 to 50% of total global CH4 

emission to the atmosphere each year (Whiting & Chanton, 1993). Enteric fermentation 

in wildlife (e.g. moose, elk, bison, and deer) is a natural contributor to total CH4 

emissions, contributing to approximately 4.3% of total CH4 emissions in the USA 

(NASEM, 2018).  

Methane was originally thought to be a more potent GHG than CO2 with 21 times 

the warming potential (Qiao et al., 2014); however, that number has been further refined, 

as CH4 has a shorter half-life than originally predicted and only remains in the 

atmosphere for 10 to12 years before it is oxidized into CO2 and H2O. Agricultural land 

use, industrial manufacturing, and wastewater treatment are the largest contributors to 

total N2O emissions (USEPA, 2021).  

The livestock sector contributes approximately 14.5% of total global 

anthropogenic GHG emissions, originating from enteric fermentation, manure 

management, feed production, and energy consumption, equating to an estimated 7.1 Gt 

CO2 equivalents annually (Gerber et al., 2013). Of this total GHG production from 

livestock, around 44% is in the form of CH4 (Gerber et al., 2013). 

As an industry, agriculture has been challenged to reduce its contribution to GHG 

emissions. Moss et al. (2000) suggested that to reduce our GHG footprint, reducing CH4 

emission from agricultural sources, specifically from enteric fermentation, would 

stabilize atmospheric CH4 concentration. In comparison to the 1970s, modern beef 
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production exhibits a 16% decrease in carbon footprint per unit of beef (Capper, 2011). 

Capper (2011) compared U.S. beef production in 1977 with 2007, reporting that 

considerably less resources were required to produce 1 billion kg of beef in modern 

times, with approximately 30% fewer animals, 19% less feedstuffs, 12% less water, and 

33% less land. Although strides have been made in increasing beef production efficiency, 

there is still an opportunity to continue to improve.  

Enteric GHG production  

Methane is formed through a microbially driven process by highly specialized 

methanogens that are part of the domain Archae (Qiao et al., 2014) and lack 

peptidoglycan in the cell wall (Balch et al., 1979). Methanogens are the only known 

microorganisms capable of producing CH4 (Hook et al., 2010) and thrive in anaerobic 

environments that are abundant in organic matter, including swamps, landfills, and 

sewage treatment plants (Qiao et al., 2014). The reticulorumen of ruminant animals is 

also an ideal environment for methanogens (Hristov et al., 2013), which utilize hydrogen 

to reduce CO2 and other methyl compounds into CH4. Once CH4 is produced in the 

rumen, a group of microbes known as methanotrophs, which are present in the rumen 

fluid and found attached to the rumen wall, consume CH4 and metabolically utilize it as 

their main source of carbon for energy (Mitsumori et al., 2002; Sahoo et al., 2021).  

 Methane and CO2 are produced as waste products of the fermentation process in 

herbivores, in particular ruminants, where carbohydrates are broken down into simple 

sugars by various microorganisms to later be absorbed into the bloodstream (Sejian and 

Saumya, 2011). Methane produced as result of fermentation can occur in the lower 

gastrointestinal tract, this being more typical for non-ruminants, and in the rumen, which 

encompasses 89% of total CH4 emitted from ruminants (Murray et al., 1976). Figure 1.1 
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depicts the mechanism of enteric CH4 production in the rumen occurring during the 

digestion process (Sejian et al., 2013). Upon ingestion of a carbohydrate, cellulolytic 

bacteria ferment the feedstuff into simple sugars (e.g. glucose), which are then used by 

the microbes as an energy source for microbial growth and end-product formation. The 

end products of microbial fermentation of carbohydrates include the three predominant 

volatile fatty acids (VFA) acetate, propionate, and butyrate, CO2 and CH4 (Wanapat et al., 

2015; Sejian et al., 2013). Acetate and butyrate act as hydrogen (H2) providers, while 

propionate acts as a H2 consumer (Sejian et al., 2013). In response to the amount of 

hydrogen pooling and the end-product of digestion, CH4 is produced in the rumen (Sejian 

et al., 2013).  

Methane formation is the terminal step in carbohydrate fermentation, where the 

hydrogens must be removed from the rumen to allow the microorganisms to function 

optimally and to promote complete oxidation of the feed substrate to improve energy 

recovery (Sharp et al., 1998). If the hydrogen end-product is not removed from the rumen 

environment, it can hinder specific functions of the rumen microorganisms, and 

ultimately inhibit metabolism (Sharp et al., 1998). Ruminal CH4 production limits the 

increase in partial pressure of H2, which would otherwise interfere with the ability of 

microbial enzymes (i.e. NADH dehydrogenase) essential for electron transfer to function 

properly (Morgavi et al., 2010). The microbes of the rumen ferment feed and the products 

of the fermentation process provide the animal with its required nutrients, often enabling 

the ruminant animal to acquire energy by consuming low-value material that many other 

animals are unable to utilize for energy (Sejian and Saumya, 2011).  
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Following the process of fermentation, the ruminoreticulum produces large 

volumes of fermentative gases, predominantly CH4 and CO2, which require a mechanism 

known as eructation to expel gases (Dougherty, 1968). Of total gas being expelled from 

the ruminoreticulum, CO2 and CH4 comprise approximately 60 and 35%, respectively 

(Dougherty, 1968). Forward-moving ruminal contractions, beginning at the posterior 

dorsal sac, push the gases toward the anterior rumen, and further to the esophagus 

(Weiss, 1953). Eructation expels gas upward through the esophagus and out through the 

mouth and nose, emitting these gases to the environment (Murray et al., 1976; Wanapat 

et al., 2015). The eructation reflex is vital for ruminants, as a gaseous buildup in the 

reticulorumen can lead to death (Dougherty, 1968). In ruminant animals, fermentative 

gases are expelled predominantly by eructation, with trace amounts being absorbed 

across the digestive tract to be expelled during defecation (Dougherty, 1968). Murray et 

al. (1976) reported that of total CH4 production in small ruminants (sheep), ruminal 

production accounts for approximately 87% of total CH4, and approximately 95% of CH4 

produced in the rumen is eructated. Murray et al. (1976) also highlighted that of the total 

CH4 produced in the lower digestive tract, approximately 89% is excreted from the 

animal via the lungs, and the remaining 11% is excreted through the anus. 

Methanogenesis 

Methanogens produce CH4 freely through the normal process of feed digestion 

(Hook et al., 2010) sourced from a handful of rumen substrates, including CO2, H2O, 

methanol, and acetate (Qiao et al., 2014). Methanogens scavenge CO2 and H2 within the 

rumen that are produced by various other species of fermenting bacteria within the rumen 

microbiome (Patra et al., 2017). Ruminal production of acetate forms a substrate called 

formate, which can also be used as a substrate in methanogenesis but is often converted 
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to H2 and CO2 at too rapid of a rate for the methanogens to utilize (Sejian et al., 2013). 

Methanogenesis utilizes H2 and CO2 produced from carbohydrate fermentation, which 

occurs simultaneously with the production of VFA in the rumen (Hungate et al., 1970). 

Rumen turnover inhibits the conversion of CO2 and H2 from VFAs, so VFAs are not 

commonly used as a substrate for methanogens, due to the lengthy process of conversion 

(Hobson and Stewart, 1997). Hydrogen elimination in the rumen is done by the formation 

of CH4, where CO2 + 4 H2 à CH4 + 2 H2O (Moss et al., 2000).  

Rumen methanogen populations are influenced by ruminant species type, where 

ovine populations vary from bovine (Hook et al., 2010). In addition, diet has also been 

shown to impact rumen methanogen population (Hook et al., 2010). The most common 

methanogen found in cattle, Methanobrevibacter ruminantium, is able to utilize H2 and 

CO2 as substrates, producing CH4 as the product (Balch et al., 1979). Most methanogens 

require hydrogen as an energy source; however, Poulsen et al. (2013) discovered a new 

group of methylotrophic methanogens that do not require hydrogen, yet also appear to 

contribute to CH4 production from ruminants. There are many approaches that aim to 

reduce CH4 emission from livestock (described in detail below), and these approaches all 

focus on reducing H2 availability for rumen methanogens (Poulsen et al., 2013). Poulsen 

et al. (2013) observed that when rapeseed oil was supplemented in lactating dairy cows, 

concentrations of methylotrophic methanogens were significantly reduced. Therefore, 

targeting methanogens in the rumen that do not require H2 as their predominant energy 

source may be a valuable implication for further investigation to reduce ruminal CH4 

production.   
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The amount of CH4 produced from rumen methanogens depends on the amount of 

hydrogen produced as an end-product during the process of carbohydrate fermentation 

(Palarea-Albaladejo et al., 2017) and, to a lesser extent, amino acid (AA) fermentation in 

the rumen and hindgut (Hristov et al., 2013). It is estimated that domesticated ruminants, 

such as cattle, sheep, and goats, produce up to 86 million metric tonnes of CH4 annually 

on a global scale (McMichael et al., 2007). Ruminant animals can produce between 250 

to 500 L of CH4 per day, equating to a typical loss of approximately 6% of their ingested 

energy, ultimately creating an inefficiency in cattle feeding (Johnson and Johnson, 1995). 

Johnson and Ward (1996) estimated the methane loss of ingested feed energy to be 

anywhere from 2 to 12% in ruminants, with much of the variation based on diet. The 

major inefficiencies of anaerobic metabolism are the storage of oxygen released as CO2 

by the animal and the disposal of hydrogen released as CH4 (Van Soest, 1994).  

While methanogens are the predominant source of ruminal CH4 production, they 

do not work alone, often creating close relationships with rumen protozoa (Sharp et al., 

1998). The association between ruminal methanogens and protozoa is mutualistic, both 

gaining value from the opportunity for interspecies hydrogen transfer (Wolin, 1974). The 

most commonly found bovine rumen protozoa that form relationships with methanogens 

are from the genera Entodinium, Epidinium, and Polyplastron (Sharp et al., 1998). While 

ruminal fermentation provides energy for methanogens, the protozoa benefit from 

removal of hydrogen, as lingering hydrogen can also be inhibitory to their metabolic 

processes (Sharp et al., 1998). Methanogens also interact with ruminal bacteria through 

interspecies H2 transfer, mutually benefitting the microbes as the interaction prevents H2 

accumulation and feedback inhibition (Patra et al., 2017).  
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Factors that influence ruminal CH4 production  

Factors that influence CH4 production from ruminants include type of 

carbohydrate in the diet, level of feed intake, feed processing, addition of lipids or 

ionophores to the diet, and alterations in the microflora of the rumen (Johnson and 

Johnson, 1995). Johnson and Johnson (1995) described that variation in ruminant CH4 

production was due to the amount of dietary carbohydrate fermented in the reticulorumen 

and the VFA ratio produced. The ratio of acetate to propionate has a major impact on 

rumen CH4 production, where there is a greater CH4 loss from acetate production than 

propionate (Johnson and Johnson, 1995).  

Roughage vs. Concentrate diet  

Feeding cereal grains to ruminants allows starch-fermenting bacteria to produce 

propionate, which reduces CH4 production and ammonia accumulation (by assimilation) 

in the rumen (Lana et al., 1998; Wanapat et al., 2015). The relationship between dietary 

concentrate proportion of gross energy intake (GEI) and CH4 production is curvilinear in 

nature (Sauvant and Giger-Reverdin, 2007). A review paper by Martin et al. (2020) 

outlined that, for diets containing 30 to 40% concentrate, CH4 production remains 

relatively constant around 6 to 7% of GEI, dropping significantly for diets containing 80 

to 90% concentrate, measuring CH4 at values around 2 to 3% of GEI.   

A decrease in ruminal pH has been associated with feeding cereal grains (Slyter, 

1976) in addition to increasing ruminal rate of passage (Hook et al., 2010). When 

measured in vitro, once the pH of the rumen drops below 6.0, there is a decrease in CH4 

production from ruminal bacteria (Van Kessel and Russell, 1996), where low ruminal pH 

can inhibit growth and activity of methanogens (Hegarty, 1999). Feed intake is impacted 

by level of concentrate in the diet and research has shown that replacing carbohydrates 
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from forages with energy-dense concentrates reduces feed intake. Dry matter intake 

(DMI) largely impacts CH4 production and can be altered by the quality and digestibility 

of the diet (Blaxter and Clapperton, 1965). In a meta-analysis, Blaxter and Clapperton 

(1965) demonstrated that CH4 production increased as a function of increased intake in 

48 different experiments performed on sheep. Additionally, Beauchemin and McGinn 

(2006) evaluated the effects of feeding ad libitum vs. 65% of ad libitum intake high-

forage and high-concentrate diets on CH4 production (g per d), reporting that CH4 

production was greater for ad libitum cattle compared to cattle with restricted intake. 

Winders et al. (2020) reported similar findings, where CH4 production was reduced in 

growing cattle when restricted to 75% of ad libitum intake compared to steers without 

intake restriction.  

In forage-based diets, the neutral detergent fiber (NDF) content of the diet is one 

of the largest drivers of CH4 and CO2 production. Forage quality is described as the 

extent to which a forage has the potential to produce a desired performance response in 

the animal, such as weight gain. Forage quality is influenced by palatability, intake, 

digestibility, and NDF content (Ball et al., 2001). It is well understood that greater enteric 

emission is associated with forage-based diets compared to concentrate diets; however, 

the magnitude to which forage quality is associated with CH4 production has differing 

results in literature. Cole et al. (2020) studied the relationship between dietary quality and 

protein supplementation of low-quality, warm-season grass hay and methane emissions 

of 8 beef steers in a 4 x 4 Latin square design. The treatments were 1) low-quality forage-

based diet (7.4% crude protein (CP)); 2) low-quality forage with supplemented 

cottonseed meal (10% CP); 3) medium-quality forage-based diet (10.5% CP); and 4) 
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high-quality forage-based diet (13% CP). Protein digestibility increased as quality of the 

diets increased, yet there was no difference in total daily methane production (Mcal/d) 

based on the diet. But, CH4 production per unit of digested organic matter (OM) 

decreased with increased quality of the diet (Cole et al., 2020). The results from Cole et 

al. (2020) were similar with Ominski et al. (2006), who found that CH4 production 

increased as forage quality of alfalfa-grass silage decreased in growing cattle.  

Jennings et al. (2018) looked at the relationship between CH4 production and 

excess dietary CP and metabolizable protein (MP) offered to eight steers fed a steam-

flaked, corn-based finishing diet at two different CP levels. They fed two dietary 

treatments in two experiments in a switchback design over three periods: a control at 1x 

maintenance energy intake (13.8% CP, 9.63% MP) and an excess CP diet at 2x 

maintenance energy intake (19.5% CP, 14.14% MP). The excess CP diet contained corn 

gluten meal for increased CP content. Results from their study reported no difference in 

enteric CH4 when dietary CP content was increased in high-concentrate diets. These 

results contradict Shreck et al. (2015) studying dietary CP inclusion in steers fed a low-

quality, blue-stem hay (4.6% CP), provided either cottonseed meal (CSM), dried distillers 

grains with solubles (DDGS) plus urea to meet rumen degradable protein (RDP) provided 

by the CSM, or no additional protein supplementation (control). Results from their study 

found that forage intake increased with protein supplementation, CH4 emission was 

greatest for CSM, and both CSM and DDGS led to greater CH4 production than the 

control. In a low-quality forage-based diet, increasing CP inclusion in the diet increased 

overall CH4 production, but decreased CH4 production as a percentage of gross energy 

(GE) intake. The contrasting results between Jennings et al. (2018) and Shreck et al. 
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(2021) suggest that type of diet (concentrate- or roughage-based) and overall digestibility 

of the diet impact CH4 production.  

Ruminal rate of passage  

Feed processing methods performed on roughage sources, such as grinding and 

pelleting, have been shown to decrease ruminal CH4 production, while improving animal 

performance (Blaxter, 1989). Passage rate directly impacts ruminal CH4 (Hook et al., 

2010). When feed spends less time in the rumen (fast passage rate) a reduction in CH4 

production is expected due to a reduction in ruminal digestion (Moss et al., 2000). 

Kennedy and Milligan (1978) noted a 30% decline in CH4 production when passage rate 

increased. Passage rate is intrinsically influenced by plant stage of maturity, plant leaf-to-

stem ratio, and species forage type (Poppi et al., 2001; Kuoppala et al., 2009). Krizsan et 

al. (2010) performed a meta-analysis on ruminal passage rate, concluding that passage 

rate of concentrate particles is greater than that of forage particles, and therefore, a diet 

greater in concentrate has reduced CH4 production. Johnson and Johnson (1995) noted 

that carbohydrates from the cell wall yield greater CH4 production than cell solubles, 

attributing this difference to the greater acetate-to-propionate ratio produced in the rumen 

during the fermentation process. Johnson and Johnson (1995) also noted the importance 

of passage rate through the rumen in determining CH4 concentration, suggesting that 25 

to 28% of variation in CH4 production is due to particulate and fluid rate of passage 

through the gut.  

Lipid inclusion in the diet  

Addition of lipids to the diet have been shown to reduce the production of enteric 

CH4 in ruminants (Hook et al., 2010). Dietary lipid additions include fatty acid and oil 

supplementation and are thought to provoke an antagonistic effect on CH4 production 
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(Hook et al., 2010). When lipid content is increased in the diet, methanogenesis 

decreases, likely due to the inhibition of protozoa, increased production of propionic acid, 

and cellular process of biohydrogenation (Johnson and Johnson, 1995). Biohydrogenation 

is the process of saturating unsaturated fatty acids (Johnson and Johnson, 1995). 

Unsaturated fatty acids inhibit methanogens by acting as hydrogen acceptors (Johnson 

and Johnson, 1995) and by interrupting membrane transport by directly binding to the 

cell membrane (Dohme et al., 2001). Beauchemin et al. (2008) reported a 5.6% reduction 

in CH4 (g/kg of DMI) from cattle and sheep for every percentage unit of lipid 

supplemented in the diet.  

 One way to introduce lipids to the diet is through the addition of oil or oilseed 

supplements, more specifically, through supplementation of unsaturated fatty acids. In a 

meta-analysis comparing saturated fatty acids to unsaturated fatty acids and their impact 

on CH4 production, Patra (2013) showed no effect of saturated fats on CH4 production 

and a significant reduction in CH4 production (g/d) for both mono- and poly-unsaturated 

fats. Similarly, Sauer et al. (1998) found that CH4 was slightly reduced in Holstein cows 

that had been supplemented with approximately 600 g of soybean oil (unsaturated fat) 

daily when compared to cows that had no fat supplementation. Hales et al. (2017) looked 

at the impact of feeding corn oil at 0, 2, 4, and 6% of dietary DM, displacing dry-rolled 

corn (DRC), on overall CH4 production. Results from their study found that CH4 

production (g/d) was reduced linearly as inclusion of corn oil increased, with the 6% corn 

oil treatment reducing CH4 production by 34%. Similarly, Winders et al. (2020) saw a 

15% reduction in CH4 production when corn oil was included at 3% of the diet compared 

to a negative control diet, suggesting that either the lipids have a toxic effect on certain 
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groups of bacteria, and/or biohydrogenation may act as a hydrogen sink (Beauchemin et 

al., 2007).  

Ionophores in the diet  

The addition of ionophores, which are antimicrobials included in the diet of 

livestock to improve production efficiency, has also been shown to reduce enteric CH4 

production (Hristov et al., 2013). The most widely used and studied ionophore included 

in the diet of beef cattle is monensin, which acts as a rumen modifier and actively reduces 

CH4 emissions (Hristov et al., 2013). Monensin causes a shift toward propionate 

production by selecting for gram-negative microorganisms (Bergen and Bates, 1984). 

Due to this mechanism of action, it is hypothesized that monensin causes inhibitory 

growth of bacteria and protozoa in the rumen, which then become a substrate for 

methanogenesis, instead of directly affecting CH4 production by inhibiting methanogens 

(Bergen and Bates, 1984; Van Nevel and Demeyer, 1977). Appuhamy et al. (2013) 

completed a meta-analysis on 22 controlled studies where monensin (given at 32 mg/kg 

DM) was included in the diet of both beef and dairy cattle. Results from their meta-

analysis suggest there was a greater anti-methanogenic influence of monensin when 

included in the diet of beef steers compared to dairy cows (Appuhamy et al., 2013). 

These differences were likely due to diet, where monensin had a greater impact on 

concentrate-based diets fed to beef steers, in comparison to forage-based diets fed to 

dairy cows (Appuhamy et al., 2013) because of the greater acetate-to-propionate shift 

associated with concentrate diets. When monensin is included in the diet, reductions in 

CH4 have varied from minor decreases to large reductions of up to 25% (Johnson and 

Johnson, 1995). The incorporation of monensin in the diet may only reduce CH4 

production in the short-term. Guan et al. (2006) evaluated the short- and long-term effects 
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of including monensin in the diet of beef steers. Treatments included low- vs. high-

concentrate diets, with steers receiving either monensin or lasalosid ionophores. 

Ionophore inclusion decreased CH4 production (L/kg of DMI) by 27% in the steers fed 

the high-concentrate diet (first 2 weeks) and 30% in steers fed the low-concentrate diet 

(first 4 weeks). For the low- and high-concentrate diets, original CH4 production levels 

returned after 3 and 6 weeks, respectively, suggesting that ruminal microbes may adapt to 

ionophores over time.  

Defaunation  

Alterations to the microflora of the rumen have been described to reduce CH4 

emissions from ruminants (Johnson and Johnson, 1994). The alteration technique is 

referred to as defaunation, where protozoa are removed from the rumen and studied for 

their role in CH4 production and rumen function (Hook et al., 2010). As described earlier, 

the relationship between rumen protozoa and methanogens provides the methanogens 

with the hydrogen molecules that they need to reduce CO2 into CH4 (Machmuller et al., 

2003). The methanogens associated with the ciliate protozoa have been shown to be 

responsible for 9 to 37% of ruminal CH4 production (Machmuller et al., 2003; Newbold 

et al., 1995). To decrease CH4 production within the rumen, treatments that decrease the 

protozoal population associated with the methanogen population must be reduced (Hook 

et al., 2010). These treatments include, but are not limited to, copper sulphate, acids, 

lipids, and tannins (Hobson and Stewart, 1997).  

 Increasing the concentrate-to-forage ratio of the diet, improving forage 

digestibility, and adding dietary lipids and ionophores have all been shown to impact 

enteric CH4 production. Although these management strategies may be effective in 
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reducing enteric methane production, they may not offer the scale of GHG reduction 

required to reduce the beef industry’s overall impact on emissions and climate change.  

Feed additives to reduce enteric CH4 production  

There has been a plethora of enteric CH4 abatement strategies proposed and 

researched throughout the literature (Hook et al., 2010). In addition to the factors that 

influence CH4 production mentioned above, recent literature has been focused on the 

addition of feed additives as CH4 abatement strategies. While modifications made to the 

diet have shown to be effective short-term methods for mitigating CH4 emissions from 

cattle, there is a critical need for long-term mitigation strategies (Palarea-Albaladejo et 

al., 2017). Biochar, seaweed, and 3-Nitrooxypropanol (NOP) are three products that have 

been studied heavily within the last decade to determine their impact on enteric CH4 

production.  

Biochar  

Biochar is a carbon-rich substance produced during pyrolysis of organic matter 

(Kammann et al., 2017). Biochar has long been used as a soil amendment to improve 

nutrient capture, decrease ammonia volatilization, and decrease organic matter loss 

(Schmidt et al., 2019). Prior to the introduction of biochar (wood-sourced) into livestock 

feeding in the early 2010s, charcoal was considered a remedy for indigestion and 

poisoning in domestic animals (Decker and Corby, 1971). Because biochar has a high 

adsorption capacity due to its large and highly porous internal surface area (Thies and 

Rillig, 2009), feeding biochar may adsorb a variety of different toxins, metabolites, and 

pathogens in the gastrointestinal tract (Schmidt et al., 2019). Furthermore, toxins can be 

removed from the bloodstream when biochar is introduced into the animal’s body, where 
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the surface area properties of the biochar interact with tissue permeability of major 

organs (Pond, 1986) and positively impact animal health.   

In addition to adsorption capacity, biochar has a high potential for redox activity. 

Various biochars act as electron acceptors and store and mediate electrons during 

biochemical reactions (Sun et al., 2017). In general, biochars that are produced at low 

temperature (highest temperature treatment (HTT) 400-450°C) are suggested to act like 

geobatteries and high-temperature biochars (HTT >600°C) act like electrical conductors 

(Yu et al., 2015). When microbial decomposition of organic feedstuffs occurs in the GI 

tract (specifically the rumen), the microbes require a terminal electron acceptor to help 

reduce the concentration of accumulated electrons (Schmidt et al., 2019). Biochar is a 

sufficient electron mediator due to its redox potential, and when consumed by the animal 

along with high-energy feedstuffs, biochar may improve the efficiency of a multitude of 

redox reactions, resulting in the potential for improved feed intake efficiency (Liu et al., 

2011).  

Biochar has been utilized in research trials as a livestock feed additive for cattle, 

goats, pigs, and poultry. When fed to livestock, many of the effects of biochar are based 

on one or more of the following mechanisms: adsorption within the rumen or into the 

bloodstream, adsorption followed by a chemical reaction, selective colonization of 

biochar with bacteria, and binding of biochar to rumen substrates (Schmidt et al., 2019). 

Over the last decade, regular feeding of biochar at inclusion rates ranging from 0.2 to 3% 

of diet DM have been studied to determine the impact of biochar on enteric CH4 

production, feed conversion, body weight gain, and meat quality. Improved performance 

was found when feeding either wood-sourced biochar (Choi et al., 2012) or bamboo-
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sourced biochar to pigs (Chu et al., 2013). Chu et al. (2013) compared bamboo-sourced 

charcoal at 0.3 (T1) and 0.6% (T2) of the basal diet DM to a control and found that 

average daily gain (ADG) increased by 14.5 and 8.2% for T1 and T2, respectively, and 

feed efficiency was improved by 14.9 and 11.7% for T1 and T2, respectively, compared 

to the control. Similarly, Choi et al. (2012) combined stevia (natural sweetener) and 

charcoal supplementation in varying treatment levels and found ADG was greatest in the 

treatments that included 0.3% stevia and a combination of 0.3% stevia and 0.3% 

charcoal.  

The use of biochar as a feed additive has been examined both in vitro and in vivo; 

however, there is less research on the effects of biochar when included in the diet of beef 

cattle. Furthermore, the results from recent literature in this area are varying. 

Biochar utilized in agriculture is predominantly sourced from forest wood waste, 

but many other products such as nuts, rice, coffee, corn stover, and animal manure have 

also been utilized. Therefore, it is important that biochar utilized in agriculture for both 

research and commercial application be properly characterized. When biochar is included 

in the diet of ruminants, the nutritive value, in vitro digestibility, volatile fatty acid (VFA) 

production, and gas production (McFarlane et al., 2017) are all important measures to 

consider when characterizing biochar. In a 2 x 3 factorial experiment with orchard grass 

as the basal diet, McFarlane et al. (2017) compared two different biochar processing 

sizes, either fine-ground or coarse, sourced from 1) Chestnut Oak, 2) Yellow Poplar, or 3) 

White Pine included at 0.81% of basal dietary DM. Results from this study revealed that 

total gas production was greater for finely ground compared to coarse biochar and was 

not influenced by biochar type. Additionally, VFA production was not influenced by 
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biochar size or type (McFarlane et al., 2017). Crude protein digestibility exhibited a type 

by size interaction, where CP digestibility was lower for finely ground Chestnut Oak and 

White Pine biochar compared with coarsely ground biochar from these sources, while no 

difference was exhibited in fine vs. coarse biochar for Yellow Poplar (McFarlane et al., 

2017). 

When biochar was added in vitro to ruminal fluid at concentrations of 0.5 and 1%, 

Leng et al. (2012) reported a reduction in methane production of 10 and 12.7%, 

respectively. Similarly, Winders et al. (2019) found that when compared to a control 

treatment with no biochar inclusion, biochar inclusion at 0.8% of the diet numerically 

reduced methane production (measured as g/kg DMI) by 9.5% in steers fed a grower diet 

and 18.4% in steers fed a finisher diet. Biochar utilized in Winders et al. (2019) had a C 

content of 85%, bulk density of 88.10 kg/m3, and surface area of 323 m2/g.  

Terry et al. (2019) demonstrated minimal numerical changes in performance 

when 8 ruminally cannulated heifers were supplemented with 0, 0.5, 1, or 2% enhanced 

pine biochar on a basal diet of barley silage and grain in a 4 x 4 Latin square. Ruminal 

fermentation, apparent total tract digestibility, methane emissions, rumen microbiome, 

and fecal microbiome were analyzed. Results from this study found ammonia N 

concentration and protozoa counts responded quadratically with biochar inclusion, where 

ammonia N and protozoa were decreased when biochar was included at 0.5 and 1% of 

diet DM compared to the control (0%) and 2% biochar. There was no impact by 

enhanced pine biochar on total tract digestibility, N balance, or CH4 production compared 

to negative control.  
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Teoh et al. (2019) utilized the in vitro rumen simulation technique (RUSITEC) to 

investigate the effect of supplementing either 400 or 800 mg per day of hardwood-

sourced biochar on CH4 production over a 15-d period. The biochar utilized in their study 

was a mineral-activated biocarbon sourced from hardwood sawdust with additives of 

bentonite, zeolite, urea, and other mineral compounds, was 10% total carbon, and 

underwent slow pyrolysis at 650°C. Results from their study found that biochar 

supplementation at 800 mg/d had a tendency to reduce the percentage of CH4 released 

during fermentation compared to the 400 mg/d treatment (Teoh et al., 2019). In addition 

to a reduction in methane, the 800 mg/d treatment decreased the abundance of one 

Methanomethylophilaceae OTU and one Lactobacillus spp OTU, suggesting that when 

biochar is included at higher concentrations, a reduction in enteric methane production 

may occur from reducing the abundance of the two aforementioned rumen microbiota.  

 Leng et al. (2012) included rice hull biochar at 0.6% of diet DM in a basal diet of 

cassava root chips and fresh cassava foliage and reported a 20% improvement in live-

weight gain in local “Yellow” cattle (n=12) that had biochar added to their diet. They also 

captured one sample per head of eructated CH4 at the end of the experiment using 

Gasmet equipment, reporting a 24% reduction in CH4 production for biochar-

supplemented cattle. The increase in weight gain that Leng et al. (2012) reported has not 

been consistently found across biochar-feeding research. Terry et al. (2019) reported 

minimal changes in performance of cattle fed enhanced biochar. The difference in body 

weight (BW) gain improvement found in the literature may be due to production and 

technology differences, type of cattle, and/or digestibility of the diet (feed processing).  
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Terry et al. (2020) utilized enhanced pine biochar fed at 0.5, 1, and 2% of dietary 

DM in a high-forage diet and a high-grain diet to determine the impact of biochar on 

growth performance, carcass quality, and feeding behavior of 160 steers. They reported 

no significant impact of enhanced biochar on DMI, feed efficiency, ADG, or final BW 

for the backgrounding phase or the finisher phase. However, total weight gain and overall 

ADG tended to decrease with 2% biochar inclusion in the diet. There was no impact of 

biochar inclusion in the diet on carcass characteristics including hot carcass weight 

(HCW), 12th rib fat, ribeye area (REA), or marbling; however, there was a significant 

increase in lean meat yield for 2% biochar treatment compared to all other treatments. 

This improvement in lean meat yield (lower assigned yield grade) with 2% biochar 

treatment was likely due to the trend of reduced HCW in the 2% biochar treatment. Terry 

et al. (2020) reported no difference in DMI or eating behavior when biochar was included 

in the diet, and this is consistent with previous studies performed on cattle fed either 

high-forage or high-concentrate diets (Terry et al., 2019; Winders et al., 2019). 

Conlin et al. (2021) looked at the optimum dose of pine-sourced biochar (0, 1, 2, 

or 3% of total DMI) required to reduce CH4 emissions from eight multiparous (late-

gestating) commercial Angus cows consuming a high-forage diet (50% alfalfa haylage, 

30% wheat straw, 17% corn silage) in a 4 x 4 Latin square design, with animal as the 

experimental unit. Biochar was sourced from Oregon Biochar Solution (White City, OR) 

and had a surface area of 456 m2/g, a bulk density of 78.5 kg/m3, and was 83.6% C as a 

% of total DM. Cows were housed together in a pen equipped with Insentec (Insentec B. 

C., Marknesse, The Netherlands) bunks to monitor individual intake. A C-Lock 

GreenFeed trailer (C-Lock Inc., Rapid City, SD, USA) was used to capture CH4 and CO2 
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emissions (g/d) throughout the feeding period. Conlin et al. (2021) found no difference in 

DMI, ADG, or BW between treatments, and biochar supplementation was ineffective in 

reducing CH4 and CO2 emissions. In a second study by Conlin et al. (2021) looking at the 

impact of supplementing cows (n = 64; with calf at side) on pasture with biochar pellets 

at either 0 (control) or 3% of estimated DMI (16 kg/d) on CH4 emissions (using C-Lock 

GreenFeed trailer), biochar addition to the diet had no impact on CH4 production (g/d, 

g/kg DMI, or g/kg BW) and cow performance was not affected.  

Over the last decade, the use of biochar as a feed additive to reduce enteric 

methane production in livestock has had varying results. The variance in experimental 

results is impacted by the characterization of biochar utilized in the study, including 

source of biochar, surface area, moisture content, carbon percentage, processing method, 

porosity, and bulk density. The basal diet that biochar is added to may also influence 

whether biochar reduces CH4 emission from ruminants.  

Seaweed  

 Macroalgae, commonly referred to as seaweed, is widely used in cosmetics, 

human nutrition, and pharmaceuticals (Paul and Tseng, 2012). Seaweeds are considered a 

sufficient feed ingredient for livestock due to their high concentrations of organic 

minerals, protein content, complex carbohydrate content, and broad bioactive substances 

(Kumar et al., 2008). Seaweed species have a unique makeup, consisting of diverse lipids 

and tannins, and many have secondary metabolites that possess antimethanogenic 

properties (Wang et al., 2008).  

In an overview of various seaweed species used in livestock diets, Maia et al. 

(2016) reported that the efficacy of seaweed as a rumen modifier/methane reducer was 

based on the composition of the biomass including species, growth stage, habitat, and the 
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basal feed of the livestock ration. In addition, pigmentation of the seaweed, either red, 

green, or brown algae, further impacts the efficacy of the macroalgae as a rumen modifier 

because of differences in chemical composition and mineral concentrations between the 

species. An in vitro study comparing five different seaweed species (of the red, brown, 

and green algae families) incubated at high inclusion level (25% DM basis) against a 

negative control found that methane production (mL per g of DM) was reduced up to 

17% for three of the seaweed species (Ulva, Gigartina, Gracilaria) compared to the 

control (Maia et al., 2016). Results from this study concluded that seaweed of the brown 

and red algae families may have greater potential in reducing methane production than 

green algae (Maia et al., 2016). Furthermore, the red algae Asparagopsis has potent 

antimethanogenic properties in vitro when included at 1 to 2% (OM basis), with some 

reductions in methane production greater than 99% (Maia et al., 2016). The 

antimethanogenic properties of red seaweeds are due to secondary metabolites (i.e. 

halogenated compounds with bromine or chlorine) that the plant has derived as a defense 

mechanism for survival in times of high competition (Liu et al., 2011). When red 

seaweed is consumed by the ruminant animal, these secondary metabolites inhibit the 

methyl transfer reactions essential for methanogenesis (Liu et al., 2011) and exert an anti-

microbial action on cellulolytic bacteria in the rumen that are key for fiber digestion 

(Wang et al., 2009), thereby reducing ruminal fiber digestibility. In addition, Li et al. 

(2018) reported that propionate production increased as the concentrations of 

Asparagopsis in the diet increased, and since propionate is a hydrogen sink, the 

concentration of hydrogen available to link with carbon for CH4 production is reduced.  
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A considerable reduction in CH4 emissions utilizing Asparagopsis species has 

been reported through varying in vitro studies; however, there are limited studies that 

show a reduction when included as a feed additive in cattle diets. Roque et al. (2019) 

studied the effect of feeding Asparagopsis armata at three levels: 0 (control), 0.5, and 1% 

inclusion (OM basis) in a 3 x 3 Latin square design on methane production. Twelve 

multiparous Holstein cows were housed in a freestall barn equipped with Calan gates to 

measure individual feed intake. Individual cow emissions (CO2 and CH4) were measured 

using the GreenFeed Large Animal System (C-Lock, Inc., Rapid City, SD) over a 7-d 

period. There was a significant linear reduction in DMI as inclusion of Asparagopsis 

increased. When Asparagopsis was fed at 0.5 and 1% of diet OM, methane production 

(g/d) per cow significantly decreased by 26.4 and 67.2%, respectively. When methane 

production was adjusted on a DMI basis (g/kg of DMI), methane yield was reduced by 

20.3% and 42.7% in cows fed Asparagopsis at 0.5 and 1% of diet OM, respectively. 

Roque et al. (2021) also studied the effect of feeding Asparagopsis taxiformis at three 

levels, 0% (control), 0.25% (low) and 0.5% (high) dietary OM basis, utilizing 21 beef 

steers, to determine the effect of Asparagopsis on CH4 production, DMI, live 

performance and carcass characteristics. Steers were fed 3 different diets during the 

progression of the study to represent the common ration composition offered in most 

commercial feedlot diets in the USA. These diets were high-forage (starter diet), 

medium-forage (transition diet), and low-forage (finishing diet), and were fed for a 

combined total of 147 d (the longest that any study has analyzed the feeding of a seaweed 

product to beef cattle). Results from this study found that low and high seaweed A. 

taxiformis inclusion yielded CH4 reductions of 45 and 68%, respectively, without any 
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loss in efficacy over the 21 weeks. There was a treatment by total mixed ration (TMR) 

type interaction, where supplementing high A. taxiformis on a low-forage TMR had 

greater CH4 reduction than supplementing high A. taxiformis on a high-forage TMR. 

There was no difference in ADG between treatments, but DMI tended to decrease in the 

low-inclusion treatment and was significantly reduced in the high-inclusion treatment. 

There was no difference between treatments for carcass weight, ribeye area, or marbling, 

and meat consumer taste preferences were similar between treatments, indicating that 

supplementation of A. taxiformis at these inclusion levels does not alter the sensory 

properties of the meat.  

As CH4 production decreases, hydrogen and CO2 emissions increased as a way 

for excess H to release from the rumen. The CH4 reductions reported by Roque and 

associates (2019) are among the largest reductions reported in recent literature when 

utilizing seaweed as a feed additive, which can be explained by the antimethanogenic 

effect of the seaweed utilized in their study (Kinley et al., 2016). Although the inclusion 

of varying species of seaweed in the diet of ruminants have shown significant reductions 

in CH4, the use of seaweed as a feed additive for cattle is not currently approved by the 

Food and Drug Administration (FDA) in the USA. This is because bromoform, a 

bioactive secondary metabolite found in red seaweed (Asparagopsis taxiformis) and the 

compound suggested to inhibit methanogenesis, is a known carcinogen and is, therefore, 

of human health concern (Abbott et al., 2020).  

3-Nitrooxypropanol  

 Since development in 2012, research utilizing 3-nitrooxypropanol (3-NOP) as a 

feed additive to reduce enteric methane production has been well established. Methyl-

coenzyme M reductase (MCR) catalyzes methane formation from methanogenic archaea, 
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and the compound 3-NOP is a structural analogue of methyl-coenzyme M, suggesting 

that when added to the rumen, it inhibits certain levels of methanogenesis by targeting the 

active site of MCR during the last steps of methanogenesis (Duin et al., 2016). When 

included in the diet of beef cattle, 3-NOP has been shown to decrease methane emission 

without negatively impacting performance (Romero-Perez et al., 2015), and is associated 

with a shift in ruminal fermentation production of acetate toward propionate (Haisan et 

al., 2014; Romero-Perez et al., 2015). The inclusion of 3-NOP in the diet reduced 

methane emissions in sheep, dairy cattle, and beef cattle (Martinez-Fernandez et al., 

2014; Haisan et al., 2014; Romero-Perez et al., 2014) by approximately 7 to 60% when 

corrected for changes in DMI. Based on these studies, methane reduction is dependent on 

mode of action in which the feedstuff was delivered, either combined as a TMR, top-

dressed, or dosed into the rumen (Romero-Perez et al., 2015).  

 Romero-Perez et al. (2015) included 3-NOP (2 g/d) in a 60% forage diet of beef 

heifers for an extended period (112 d) to determine the impact of 3-NOP on sustaining a 

reduction in enteric CH4 emission long-term compared to non-NOP treatment. Results 

from their study found that methane emissions were reduced by 59.2% when NOP was 

included in diet and total VFA concentration was not impacted in a backgrounding diet, 

suggesting that 3-NOP addition causes a sustained reduction in methanogenesis with no 

sign of adaptation by the rumen microflora. Following the 112-d treatment period, 

Romero-Perez (2015) transitioned the heifers into a recovery period with no addition of 

3-NOP in diet, and there showed no residual effects of 3-NOP on the variables studied.  

 The success of 3-NOP in reducing enteric CH4 production without negatively 

impacting performance, animal health, or carcass characteristics, has grabbed the 
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attention of the dairy and commercial feedlot industry. Royal DSM, a global nutrition and 

sustainability company, has commenced with registration of 3-NOP, renamed Bovaer, on 

the market in Europe, with sights of approving the feed additive in Canada and the USA 

in 2022 or 2023 (Guenther, 2021).  

Manure emission  

Manure from open beef feedlots is a combination of fecal matter, urine, pen 

topsoil, and other organic compounds. Nitrogen excretion from the animal can be 

classified into urea, typically from the urine, and fecal N, which combines organic N 

from the feedstuff and microbial N produced from the hindgut. Methane and nitrous 

oxide (N2O) are the predominant GHG emissions produced from manure decomposition, 

and ammonia (NH3) is the predominant non-GHG gaseous emission. Of the 10% of total 

GHG emissions that livestock and crop production account for in the USA, emissions 

from excreted manure account for approximately 12% of that fraction (USEPA, 2021). 

Organic matter in manure is converted to CH4 during anaerobic decomposition (deep 

lagoons or holding tanks) and denitrification during anaerobic storage or treatment 

produces N2O emissions (Gerber et al., 2013). In addition, NH3 in the manure volatilizes, 

with some transforming to N2O via combined nitrification-denitrification (Gerber et al., 

2013). These N losses via volatilization are a direct economic loss in value of the manure. 

Furthermore, N2O is a particular concern for its global warming potential, estimated to be 

up to 310 times that of CO2 (Forster et al., 2007).  

Ammonia (NH3)  

Ammonia (NH3) is a gaseous form of nitrogen, and although it is not a 

greenhouse gas, it is a common emission produced from agricultural production. The 

predominant ways in which NH3 is lost to the environment in agriculture are through the 
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storage and application of organic (manure) and inorganic N fertilizers, by grazing 

animals, and during manure storage and treatment. On a global scale, it is estimated that 

agriculture accounts for 80 to 90% of total NH3 emissions (Bouwman et al., 1997; Xu et 

al., 2019) via volatilization from livestock manure and the storage and application of 

synthetic N fertilizer (Bouwman et al., 1997). 

Ammonia emissions are associated with two looming global environmental 

concerns: acidification and eutrophication. Precipitation that is acidified by ‘reactive N’, 

including NH3, and direct deposition of certain forms of N fertilizer to agricultural land 

can lead to acidification of soils and water bodies. Excess soil acidity is harmful for 

various aquatic and terrestrial species and can negatively impact soil microbial 

communities. Increased deposition of NH3 can lead to elevated N concentrations in soil 

and water bodies, resulting in eutrophication. Eutrophication is defined as the over-

growth of plants and algae due to excess nutrients (N and P) present in water bodies. 

Following excessive growth, many of the plants will die and decompose. The 

decomposition process of the dead plant material uses the majority of the O2 present in 

the water body, which becomes detrimental for fish and other species that require O2 to 

survive, resulting in fish kills. 

Once ammonia enters the atmosphere via volatilization from manure (on feedlot 

pen surfaces and in other storage systems), it can react with atmospheric acids, such as 

nitric and sulfuric acid. The reaction of ammonia with atmospheric acids can form fine 

particulate matter, specifically PM2.5, which is a regulated air pollutant associated with 

respiratory disease in humans. Fine particulate matter can be carried by air currents and 
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return to soil through dry or wet deposition (Montes et al., 2013) and can be harmful for 

sensitive ecosystems and contribute to groundwater pollution (Hristov et al., 2013).  

The N content of livestock feeds is often in excess of the animal’s nutrient 

requirements, resulting in a large concentration of N that is excreted in urine and feces 

(Spiehs, Woodbury, & Parker, 2019). Of the total amount of N fed in the animal’s diet, 

only 10 to 30% is retained by the animal for growth and milk production (Stowell, 2018). 

In a beef feedlot setting, approximately 5% (or less) of the excreted N (representing 70-

90% of the N fed) will run off the pen, 30 to 50% will be retained in the manure as 

organic N, and the remaining 40 to 70% will volatilize into the air as ammonia. 

Depending on the diet consumed by the animal, feedlot cattle on a concentrate 

diet generally excrete 60 to 80% of N intake in the urine and the other 20 to 40% in the 

feces (Bierman et al., 1999; Bao, Zhou and Zhao, 2018). The concentration of N in 

excreted feces remains relatively constant, independent from diet, whereas the 

concentration of N in urine is highly variable and largely dependent on diet (Powell and 

Rotz, 2015). One of the largest determinants of excreted N in cattle urine is the 

percentage of dietary crude protein intake (Powel and Rotz, 2015). Menezes et al. (2016) 

compared feeding beef cattle with a ration of 100, 120, or 140 CP/kg DM, finding that N 

retention and ADG were not affected by dietary CP inclusion; however, urinary N 

excretion was lower for the 100 g CP/kg DM treatment compared to the higher inclusion 

treatments.  

Volatilization of NH3 from cattle manure occurs rapidly and is altered by the 

ambient air temperature, wind, and pH of the pen surface. Nitrogen is primarily excreted 

through urine, around 60 to 80% on concentrate diet (Bierman et al., 1999), where 
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approximately 97% of the N in urine is in the form of urea (Mackie et al., 1998). When 

urine and feces mix, urea is rapidly converted to NH3 (Mobley and Hausinger, 1989) via 

the enzyme urease, which is derived from microbes in the feces.  It is well defined in 

literature that manure N loss as NH3 is greater in summer months (May to October) than 

winter months (November to May), because warmer temperatures (>21°C) increase the 

speed of hydrolysis of urea (Dari, Rogers, & Walsh, 2019). 

A meta-analysis completed by Homolka et al. (2021) from data collected in 

Nebraska determined that manure N loss as a percentage of fed N averaged around 70% 

in the summer and 50% in the winter. The winter months range from 40 to 70% loss and 

the summer months from 65 to 71%, making it clear that the warmer ambient air 

temperature in the summer months favors volatilization. Kissinger et al. (2007) 

summarized the manure characteristics of 15 open-lot pens of cattle with 40 separate lots 

of cattle fed in those pens (n = 6,366) sourced from Nebraska feedlots over the course of 

a 1-yr feeding period. They observed N losses from volatilization and runoff to be 53 and 

67% of fed N for winter and summer, respectively, and also concluded that the total mass 

of manure harvested after winter-feeding is about 20% more than the mass of manure 

harvested after summer-feeding. Todd et al. (2008) conducted a feedlot study in Texas to 

determine the NH3 emission rates of a 77-ha, 45,000-head commercial yard. Emissions 

were quantified using profiles of NH3 concentration, air temperature, and wind speed. 

They found the N loss from manure via NH3 volatilization to be 68% in the summer 

months and 36% in the winter months.  

The pH of the pen surface influences the speed of NH3 volatilization as well, 

where the ideal pH conditions for rapid volatilization are neutral (pH 7) to basic (pH 10; 
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Hartung and Phillips et al., 1994). Water and urease are present on the pen surface and 

available for interaction with urea, and as the pH of the pen surface becomes more 

alkaline (pH > 8), a single molecule of urea rapidly hydrolyzes into two molecules of 

NH3 (Rhoades et al., 2010). When surface pH drops below 6.5, research has shown that 

little NH3 volatilization will occur, due to the pKa of ammonium (NH4) being less 

volatile than NH3 (Rhoades et al., 2010). The pKa for ammonia and ammonium 

equilibrium is 9.24 under normal conditions and temperatures. As pH of the pen surface 

becomes more alkaline, the relative proportions of NH3 to NH4 increase. Court et al. 

(1964) reported relative proportions of NH3 to NH4 of 0.1, 1, 10 and 50% at pH of 6, 7, 8, 

and 9, respectively.  

The mechanisms of action by which urea and organic N undergo microbial 

transformation upon contact with the feedlot pen surface are different. As mentioned 

above, N excreted in the feces originates from the feed source, bacterial cells, and other 

endogenous sources. The undigested feedstuff is mostly excreted as true protein in the 

form of amino acids, bacterial N is excreted in nucleic acids (partly) and amino acids, and 

the remaining fecal N is excreted as ammonium (around 50% of the total fecal N 

content). The N content in urine is predominantly excreted as urea and comes from 

excess N in the diet above the requirements of the animal.  

Nutrients on the feedlot pen surface   

Concentrate finishing diets incorporate high concentrations of N, P and soluble 

salts from the various feedstuffs, and not all of the nutrients consumed are retained by the 

animal. Of total N and P offered in the diet, beef cattle retain approximately 12% of fed 

N and 15% of fed P (Kissinger et al., 2007). According to Kissinger et al. (2007), 

overfeeding N (protein) does result in greater N excreted but does not result in greater N 
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content of the manure; instead, a greater amount of N is lost via volatilization and runoff. 

This is not the case with P, however, where an increase in P in the diet is directly related 

to a greater concentration of P recovered in the harvested manure (Kissinger et al., 2007). 

Approximately 0.16, 0.022, and 0.11 kg per animal per day of N, P and K, respectively, 

are excreted in the manure (ASAE, 2005) of feedlot beef cattle. Once excreted onto the 

pen surface, the vast majority of manure nutrients: 1) volatilize and leave as ammonia 

emissions (only N); 2) wash off the pen surface via rainfall runoff; and 3) are removed 

during pen cleaning.  

The nutrient availability in soils, specifically carbon bioavailability, largely 

impacts the metabolic and physiological processes of the microbial populations that 

inhabit it. Carbon cycling is a large part of the metabolic process within the soil microbial 

population. Microbes drive C cycling, as they are constantly in search of C, energy (in the 

form of ATP), and reducing power (NADH). When soil organic matter concentration 

increases, the concentration of carbon in the soil also increases. Soil organic carbon helps 

to improve soil structure, specifically by stabilizing aggregates within the soil, which in 

turn, protect microbes. The biological activity within the soil (microorganism growth and 

reproduction) is impacted by the availability of N, P, and K, substrate bioavailability, and 

redox reactions. The addition of fresh manure to the soil provides a source of organic 

matter (C and N) that is then consumed by soil organisms, to be utilized in growth, 

reproduction, and metabolism. Manure is also then subject to decomposition, which 

impacts the C pools in the soil. The readily available C in the soil decreases as time 

progresses, and the rate of decomposition of the microbes declines as the pool of C 

becomes more stabilized and harder to degrade. 
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 The soil profile of open-air, dirt feedlot pens is altered by animal activity and 

feedyard management practices. The feedlot soil profile can be divided into an organic 

layer (fresh accumulation of manure), interface layer (mixture of OM and mineral soil), 

and the natural mineral soil (Vaillant et al., 2009). The surface layer (roughly top 0.15 m) 

is compacted by cattle hoof action, resulting in a high bulk density (1600 to 1870 kg 

cm3), and has poor aeration (Mielke et al., 1974; Olson et al., 2005). Moisture content of 

the feedlot pen surface is dependent on animal waste and normal precipitation. In 

addition to being a moisture source, manure provides a habitat for microorganisms, such 

as bacteria and protozoa, that utilize the manure nutrients (specifically N, P, and C). 

Select groups of these microorganisms can produce organic gels and polysaccharides, 

which increase the compaction of the soil by plugging soil pores (Vaillant et al., 2009). 

The compaction of the top organic layer and the activity of the microorganisms all help to 

stabilize and seal the interface layer, preventing seepage into the natural mineral layer 

and potential contamination of groundwater. Vaillant et al. (2009) looked at soil physical 

and chemical profile under the feedlot pen in four Kansas feedlots and found that a 

limited amount of excreted nutrients had accumulated in the soil beneath the pens, 

suggesting that the compaction of the manure and surface soil mixture acts as a soil liner 

to reduce infiltration. The average organic N concentrations on the pen surface ranged 

from 500 to 22,000 mg/kg, rapidly dropping to a stable 150 to 600 mg/kg at a depth of 

0.25 m. The extractable P concentration on the pen surface ranged from 20 to 9000 

mg/kg and rapidly dropped to a range between <1.0 and 80 mg/kg at a depth of 0.50 m. 

Therefore, leaching of N and P from the feedlot pen surface represent a very small 
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component of the overall nutrient balance of the feedlot pen, and are not significant 

contributors to N and P found in groundwater (Vaillant et al., 2009; Elliot et al., 1972).  

It is estimated that less than 5% of nutrient loss from the pen surface is via runoff 

(Bierman et al., 1999; Erickson et al., 2000). In a beef cattle feeding operation, runoff 

from the pen surface generally contains nutrients (N, P, K, C), organic matter, 

microorganisms, and soil sediment (Eghball and Power, 1994). This runoff is then either 

collected in a runoff retention pond or may infiltrate into the soil, potentially posing a risk 

to ground water quality (Vaillant et al., 2009). In a recent meta-analysis by Homolka et 

al. (2021) including 15 mass-balance feedlot studies in Nebraska, it was suggested that N 

and P loss due to runoff represent 1.5 to 2.5% of fed N and 4 to 6% of fed P. These 

values are considerably smaller than values estimated by Liu and Nienaber (1996) based 

on a review of 13 studies that estimated N runoff to be 0.1 to 7% of manure N and P 

runoff to be 0.02 to 12.5% of manure P. Previous literature has noted seasonal variation 

in nutrients captured in runoff (Gilbertson et al., 1979; Homolka et al., 2021), with 

summer-feeding periods having greater nutrient recovery in runoff compared to winter, 

likely due to greater precipitation and rainfall intensity in summer months.  

Manure characteristics on the open-lot pen surface vary according to distance 

from the feed bunk, climatic conditions, and season (Sweeten et al., 1985; Kissinger, 

2005). Kissinger (2005) summarized 11 studies representing 244 pens of cattle over 10 

years and concluded that there is almost twice the manure mass harvested following a 

winter-feeding period compared to a summer period and that manure harvested after 

winter feeding has significantly greater N retention compared to summer. The significant 

improvement in excreted N recovery in manure is likely due to lower losses of N 
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volatilization during winter feeding months compared to summer feeding months 

(Kissinger, 2005). Kissinger et al. (2007) summarized the manure characteristics of open-

lot beef systems for 15 pens of cattle (n = 6,366) sourced from 6 central and eastern 

Nebraska feedlots over the course of a 1-yr feeding period to determine factors that 

impact manure quantities and mass balance of N and P. Results from this study found that 

harvested manure contains 33% of N excreted from the animal and 91% of excreted P 

(Kissinger et al., 2007). Homolka et al. (2021) reported N losses of 50 and 73% (of 

excreted N) for winter and summer-feeding periods, respectively, from a meta-analysis of 

15 feedyard studies in Nebraska. These seasonal differences in manure N content and 

overall manure N retention are impacted by feed N intake (Homolka et al., 2021) and 

organic matter (OM) content on the feedlot pen surface (Bierman et al., 1999; Erickson 

and Klopfenstein, 2001b; Lory et al., 2002). Increasing OM content may retain more N in 

the manure and reduce N loss. Organic matter removal from the pen surface during pen 

cleaning ranges from 0.3 to 4.0 kg of OM/steer per day (Homolka et al., 2021). Manure 

that is removed from the feedlot pen surface consists of OM and ash. Organic matter 

includes all carbon-based compounds (cellulose, lignin, proteins, lipids, sugars) within 

the manure and topsoil, while ash represents various other elements (Ca, Mg, K, P). 

When manure is cleaned from the feedlot pen surface, a large quantity of soil can be 

removed with the manure, with this amount varying with moisture content of the pen 

surface. When a larger volume of soil is removed with the manure, ash concentration of 

the manure increases (Kissinger et al., 2007).  

Kissinger et al. (2007) suggests that over a 150-d feeding period, approximately 

1100 kg of manure is removed per finishing animal. Furthermore, spring cleaning 
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harvests about 20% more manure than fall cleaning, with much of this increase attributed 

to a greater ash content (soil) from the spring cleaning (Kissinger et al., 2007). In general, 

the winter and spring months bring increased precipitation and less evaporation potential, 

resulting in a wetter feedlot pen surface. The wetter the feedlot pen surface, the more 

mixing of manure and soil results from cattle hoof action. When pen cleaning is 

completed in the spring (following a winter/spring feeding period), the elevated moisture 

content of the pen surface can create challenges in pen cleaning and manure harvest, 

resulting in greater soil inclusion with the manure solids, and nutrient concentrations 

(specifically phosphorus) that are greater than what was excreted by the animal 

(Kissinger et al., 2007).   

Pen surface amendments 

To reduce nutrient loss from feedlot cattle manure, a variety of pen amendments 

have been utilized, including, but not limited to, woodchips, straw, aluminum sulfate, and 

biochars sourced from various organic materials. The addition of organic matter sources 

to the feedlot pen surface can increase the C:N ratio of the pen surface, decreasing overall 

N losses from the manure by immobilizing active N. In beef feedlots, it is estimated that 

50 to 75% of excreted N is lost before manure is mechanically removed from the feedlot 

pens (Eghball and Power, 1994), resulting in a decrease in nutrient value of the manure 

(N specifically). Therefore, improving retention of N in livestock excreta can increase the 

value of the manure while also producing environmental and air quality benefits.  

Lory et al. (2002) looked at the relationship between application of sawdust to the 

feedlot pen surface and N losses in winter and summer feeding phases, concluding that 

application of a product high in C to the pen surface reduced N losses during summer 
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months. Adams et al. (2004) utilized sawdust as an OM addition to the pen surface, 

comparing it to a treatment where cattle had a dietary inclusion of 30% greater corn bran 

in the diet, and a control treatment with no sawdust application or dietary bran addition. 

The higher inclusion of bran in the diet was designed to decrease diet digestibility, 

thereby increasing OM excretion onto the pen surface. Results from their study found that 

adding OM to the pen surface, either as a pen amendment (sawdust) or by increasing OM 

excretion from the steers (bran), increased manure N content by 20% compared to the 

control in winter-feeding. Adding OM to the pen surface numerically reduced overall N 

losses from the manure, with approximately 70% of the N excreted from the cattle in bran 

and sawdust treatments captured in the manure during manure removal, and only 49% of 

N excreted in control treatment captured in the manure during pen cleaning.  

Similarly, Embertson and Davis (2009) looked at the impact of harrowing 

woodchips into the open drylot pen surface at various dairy operations and found that 

pens with woodchips harrowed in had up to 40% lower ammonia emissions compared to 

control pens, as measured using a real-time NH3 analyzer (Nitrolux-S, Pranalytica). 

Embertson and Davis (2009) also noted that utilizing woodchips on the pen surface 

reduced the moisture content of the pen surface, thereby improving cow health during 

excessive wet periods.  

Feeding less digestible diets has been shown to increase OM excretion onto the 

pen surface and improve manure nutrient capture (Bierman et al., 1999; Erickson and 

Klopfenstein, 2001a; Farran et al., 2006). Bierman et al. (1999) conducted a mass-

balance experiment to evaluate the impact of decreasing digestibility in feedlot diets on N 

mass balance. Three treatments were evaluated from June until September: a corn control 
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diet with no roughage, a diet with 7.5% alfalfa, and a diet with 41.5% wet corn gluten 

feed (WCGF). Results from their study showed that excreted N was the greatest for steers 

fed WCGF and lowest for the control diet with no roughage, and that the concentration of 

N in the collected manure was greatest for the WCGF treatment. The percent N loss was 

greatest for the WCGF and alfalfa diets compared to control, where the difference in N 

excretion between diets was via fecal N excretion. 

Erickson and Klopfenstein (2001b) looked at the impact of feeding bran at 0, 15, 

and 30% of dietary DM on N mass balance in summer and winter feeding periods. 

Nitrogen intake and excretion increased linearly with bran inclusion, and manure N loss 

decreased linearly with bran inclusion level in winter. The same patterns in intake and 

excretion were observed in the summer feeding period. Manure OM content increased as 

inclusion of corn bran in the diet increased, resulting in improved manure N capture at 

time of pen cleaning.  

Farran et al. (2006) evaluated alfalfa hay level (0, 3.75, and 7.5% dietary DM) 

and WCGF (0 and 35% dietary DM) on nitrogen mass balance from crossbred steers in a 

summer feeding period (June to October). Nitrogen intake, retention, and excretion 

increased linearly as hay inclusion increased; however, the N removed in manure and % 

N loss were similar among hay levels. The OM removed increased linearly with hay 

inclusion. The addition of WCGF to the diet increased N intake and retention, and N and 

OM removal from the pen surface, but the amount of N lost was numerically greater for 

WCGF compared to control. These data suggest that, although a greater amount of N was 

excreted and lost, there was greater N recovered in the manure.  
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Reducing the pH of the pen surface reduces NH3 volatilization and, therefore, 

amendments that reduce the pH of the bedded pack, feedlot pen surface, or litter pile may 

reduce N volatilization and improve N retention in the manure. The addition of an 

acidifying agent, aluminum sulfate (alum), to livestock waste has been well developed in 

the poultry industry as a litter amendment to reduce NH3 emissions from poultry barns. 

Research results have shown up to 70% lower NH3 fluxes with alum-treated compared to 

untreated litter (Moore et al., 2000). Spiehs, Woodbury and Parker (2019) explored the 

addition of alum to lab-simulated cattle manure bedpacks at varying concentrations (0, 

2.5, 5 and 10%) to determine its impact on NH3 and hydrogen sulfide (H2S) emissions. 

Results from their study found that NH3 emissions were reduced with 10% alum 

treatment, but H2S and CH4 emission increased as the percentage of alum added to the 

bedded packs increased. Although alum has been shown to reduce NH3 emissions, it can 

be costly when added to the feedlot pen surface, estimated to be approximately $43 per 

head per year, and may only be a short-term solution, with limited long-term 

effectiveness (Embertson and Davis, 2009). Another acidifying agent, calcium chloride, 

is a proposed method to reduce NH3 emission from livestock excreta, and when added to 

fresh poultry slurry, Witter (1991) reported a decrease in ammonia loss via volatilization.  

As discussed above, upon excretion from the animal, urea is rapidly converted to 

NH3 via the enzyme urease. The addition of urease inhibitors to livestock excreta has 

been shown to reduce N loss via volatilization. Phenyl phosphorodiamidate (PPDA) and 

cyclohexylphosphoric triamide (CHPT) are urease inhibitors that can prevent hydrolysis 

of urea for a period. Varel (1997) evaluated the effect of PPDA and CHPT on urea 

hydrolysis in beef cattle manure slurries. Results from this study found that both PPDA 
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and CHPT were adequate in preventing hydrolysis of urea for 4 to 11 d. When PPDA was 

added to the manure slurry weekly, it prevented 38 to 70% of urea from being hydrolyzed 

after 28 d. As a follow up, Varel et al. (1999) applied CHPT and N-(n-butyl) 

thiophosphoric triamide (NBPT) to open beef cattle feedlot pens. The NBPT treatment 

was applied every 7 d for 6 weeks and results revealed that the peak concentration of urea 

(17 g per kg dry manure) was stabilized at d 31 and remained at that level until week 6. 

Once NBPT application was halted, urea concentration in the manure decreased over the 

next two weeks, suggesting that the urease inhibitor lost potency over time. Parker et al. 

(2005) utilized NBPT in a simulated beef open-lot experiment to determine the effect of 

increasing application rates of NBPT (either 5 kg per ha every 4 d or 5 kg per ha doubled 

every 4 d up to 40 kg ha) on ammonia emissions. Results from their study showed that 

NBPT application at varying rates was effective in reducing ammonia emissions from 

manure by 26 to 33% of the non-NBPT treatments. Parker et al. (2012) looked at the 

interaction of NBPT application and rainfall in a lab-simulated feedlot pen surface study 

and reported that all NBPT treatments, regardless of rainfall or not, were successful in 

reducing NH3 emissions compared to non-NBPT treatments.  

 The application of lignite (brown coal), an acidic product of the first stage of 

coalification, to the feedlot pen surface has also been shown to reduce NH3 volatilization. 

Lignite has a strong adsorption for ammonium and can biologically immobilize N due to 

its high C content (Maharjan and Wilke, 2021). When lignite was applied to the pen 

surface at 3 to 6 kg per m2 prior to cattle entering the pen, results showed a reduction in N 

volatilization from manure of 30 to 66% compared to manure volatilization in non-lignite 

treated pens (Chen et al., 2015). Impraim et al. (2020) evaluated the combination of 
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lignite amendment and forced-aeration composting in cattle feedlot pens and found that 

lignite-treated pens retained N in the manure by reducing NH3 loss by 35 to 54%, and 

ultimately increased the N content of the harvested manure.  

The addition of varying sources of biochar to the feedlot pen surface have been 

proposed in recent literature to improve manure nutrient capture. Biochar is often referred 

to as a carbonized charcoal as most biochar products have a high C percentage; however, 

this differs depending on the source of the biochar. A Canadian feedlot study reported the 

C:N ratio for fresh manure, interim manure, and composted manure to be 18.3, 13.6, and 

10.6, respectively, noting that straw bedding had been used on the pen surface during the 

winter feeding period (Larney et al., 2007). The recommended C:N ratio for feedlot 

manure to be of value as a fertilizer is between 25:1 and 40:1, so the application of a 

carbon source to the pen surface should improve the C:N ratio. When C:N ratio is low 

(<15:1), ammonia losses increase because the C available for microbial growth is limiting 

and mineralization and release of N occurs rapidly (Brust, 2019). When biochar is 

utilized as a soil amendment, improvements in crop yields and soil fertility (Atkinson, 

Fitzgerald & Hipps, 2010) and decreases in emissions of N2O and CH4 from fields have 

been reported (Cayuela et al., 2014; Karhu et al., 2011).  During pen cleaning and manure 

management at cattle feeding operations, a significant amount of N can be lost from the 

manure, decreasing the value of that manure as a fertilizer, as N is a valuable addition to 

cropping systems.  

Maharjan and Wilke (2021) utilized coal char, a coal combustion residue sourced 

from a sugar factory in Nebraska. The coal char was 30% C by weight and was utilized as 

a manure amendment in three different experiments, two of which will be discussed 
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below. In experiment 1, manure was scraped from pens and composited into 8 piles (4 

piles per treatment) in a storage plot, and char was added at 454 kg char for 7258 kg 

manure. Manure grab samples were collected from each pile to measure ammonium-N of 

the manure piles as-is and after drying for 24 h in 100°C to determine the potential for 

manure N volatilization. Results from experiment 1 found that N loss potential was 

reduced from 68% (control) to 44% with char addition. In experiment 3, char was added 

to the feedlot pen surface of 5 treatment pens at a rate of 0.625 ton per animal prior to 

cattle entering the pens and was compared to 5 control pens. Soil moisture sensors were 

fixed in each pen, and results showed that following a series of snowfall events in 

November, the char-amended pens were significantly drier than the controls. Manure 

samples were collected from each of the 10 pens at the completion of the experiment, 

showing a decrease in ammonium and total N and P concentration for the char treatment 

compared to the control, however, total amounts of nutrients were not calculated.  

In a simulated lab-based cattle manure study utilizing wood-sourced biochar at 0, 

5, and 10% of manure DM and its impact on manure N retention, researchers found that 

biochar addition limited C losses, but did not impact N, P, or K retention (APPENDIX 

A). Aguilar et al. (2013) completed a laboratory evaluation of organic residues (sorghum 

straw, prairie grass, and woodchips) and biochar created from those organic residues and 

their impact on CO2, N2O and CH4 production over time when surface-amended to moist 

beef cattle manure. They found that topical application of the organic residues on manure 

did not significantly reduce GHG emissions; however, the organic residue biochars 

applied to a thickness of 3 and 5 mm significantly reduced GHG emissions after 5 d of 

measurement.  
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The addition of biochar to poultry litter has also shown significant reductions in 

GHG production. Agyarko-Mintah et al. (2016) utilized biochar produced from either 

green waste or poultry litter and incorporated them into a poultry litter and straw compost 

mix at 10% of mixture (dry weight) to determine their impact on GHG emissions when 

compared to a negative control. Emissions were measured in situ using a Fourier 

Transform Infrared Spectroscopy (FTIR). Results from their study found that despite the 

differences in chemical and physical properties of the two biochars, the cumulative N2O 

and CH4 emissions were similar between the two and were significantly lower than the 

control treatment (no amendment). In addition, total retained N content in the poultry 

litter was significantly higher for the two biochar treatments relative to the control.  

Livestock manure lagoons and runoff retention ponds are associated with 

ammonia emissions to the atmosphere due to volatilization from the stored material. 

Dougherty et al. (2017) studied the efficacy of utilizing wood-sourced biochar as a 

manure lagoon cover to trap gases and reduce ammonia emission in a lagoon-simulated 

laboratory study. Four treatments were utilized in their study: 1) biochar made from the 

combination of Douglas fir chips and center wood pyrolyzed at 600°C, 2) biochar made 

via gasification of Douglas fir chips at 650°C, 3) wheat straw, and a 4) control with no 

biocover. The treatment covers were applied to the manure surface at a thickness of 5 cm. 

Polyethylene pails (26.5 L) with 17 L of manure slurry were fit with gas sampling 

apparatuses to capture NH3 and NH2. Slurry was collected from 3 different dairy 

operations in Oregon. Biochar made from the combination of Douglas fir chips and 

center wood reduced the ammonia concentration of emissions by 72 to 80% (dependent 

on manure slurry used) compared to control. There were no significant reductions with 
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biochar made via gasification of Douglas fir chips, and researchers attributed this to a 

spike in ammonia emission at the onset of the study. The wheat straw treatment reduced 

the average NH3 concentration in the air (headspace of bucket) by 53 to 70%. Odor 

analysis from trained sensory panelists was also conducted with this research, noting that 

biochar covers may be an effective tool to reduce odor from livestock manure lagoons.  

Although the application of many of the aforementioned pen amendments have 

proven successful in reducing NH3 emissions and subsequently improving manure N 

content, the rigorous application of the products, including time and labor, make many of 

these amendments an economic burden for commercial feedlot application.  

Implications and future research  

The exact mechanisms of action of feeding biochar on the rumen microbiome are 

still widely unknown. Since biochar can be created from a multitude of different organic 

materials, there needs to be characterization of these chars in order to gain true insight 

into the product. Future large-scale research on the use of biochar included as a feed 

additive to reduce enteric methane emissions will likely offer greater insight into to the 

mechanism of action and system influence that this forestry byproduct holds.  

Conclusion  

Ruminant enteric methane production is a concern both for the environment, as a 

GHG, and as a waste of fed energy to the animal. A plethora of research has been 

completed on the topic of methane abatement strategies in livestock production, including 

alterations to the diet and level of feed intake, feed processing, addition of lipids or 

ionophores to the diet, and alterations in the microflora of the rumen. Three newly 

developed methane reduction strategies with promising preliminary results include the 

addition of biochar, seaweed, or 3-NOP to the diet of ruminants. The development and 



 46 

implementation of these methane reduction strategies can enhance utilization of dietary 

energy while decreasing the GHG impact of ruminant animals on the environment. The 

loss of N from manure in the form of NH3 via volatilization is a growing environmental 

and economic concern for livestock producers. The addition of a C source to the feedlot 

pen surface, like straw, woodchips, biochar and varying other organic matter’s, has 

shown potential in reducing N loss from manure. As an industry, there is an opportunity 

to reduce our overall imprint on gaseous emissions. Reducing the volatilization of 

ammonia from livestock manure is an area that should be of current industry focus.   
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Fig. 1.1. Mechanism of enteric CH4 production during carbohydrate digestion in the 
rumen (Adapted from Sejian et al., 2013).  
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Abstract 
 

A feedlot growing (77-d) and finishing (111-d) experiment was conducted to evaluate the 

effects of feeding biochar on steer performance, methane and carbon dioxide emissions, 

and carcass characteristics. Two treatments were evaluated, a control diet without biochar 

and the same diet with biochar included at 0.8% of dietary DM (growing) or 1.0% of 

dietary DM (finishing). The growing diet consisted of 40% corn silage, 40% wheat straw, 

15% modified distillers grains plus solubles, and 5% supplement, with 0.8% biochar 

replacing fine ground corn in supplement. The finishing diet consisted of 55% high-

moisture corn, 35% Sweet Bran, 5% wheat straw, and 5% supplement, with biochar 

replacing 1.0% HMC and added as an ingredient. Biochar was sourced from ponderosa 

pine wood waste (High Plains Biochar, Laramie, WY) and was 83% C with 426 m2/g 

surface area for both studies. Crossbred steers were utilized in the growing (n = 160; 

initial BW = 363 kg; SD = 16 kg) and finishing (n = 128; initial BW = 480 kg; SD = 17 

kg) experiments, blocked by BW, and assigned randomly to pens. Pens were assigned 

randomly to one of two treatments (biochar vs. control) with eight replications per 

treatment. Four pen replications per treatment were paired within BW block and rotated 

randomly through an emissions barn with two chambers (each treatment was evaluated 

simultaneously and for two rotations) to capture average weekly emissions of CH4 and 
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CO2. Pen was the experimental unit and chamber was included as a fixed effect for 

emissions data. There were no statistical differences in performance outcomes between 

treatments for the growing experiment (P ≥ 0.23). Dry matter intake (DMI; P < 0.01) and 

average daily gain (ADG; P = 0.02) were 2.2 and 5.9% lower for biochar-fed steers in the 

finishing experiment, respectively, resulting in a lighter hot carcass weight (P = 0.10) and 

lower calculated USDA yield grade (P = 0.02). Emissions of CH4 and CO2 were not 

affected by biochar inclusion in the growing (P ≥ 0.22) or finishing experiment (P ≥ 

0.60). Results from these studies show no indication that feeding biochar, supplemented 

at 0.8% (growing) and 1.0% (finishing) of diet, reduces methane emissions in growing or 

finishing cattle.  

Keywords:  beef cattle, biochar, methane  

 

Introduction 

Methane (CH4) emissions have been of growing environmental concern over the 

last few decades based on their contribution to climate change. Methane is emitted to the 

atmosphere via natural sources, such as wetlands and enteric fermentation from wildlife, 

and by human activities, including the petroleum and natural gas sectors and enteric 

fermentation from domesticated ruminant animals (NASEM, 2016). Although modern 

beef production resulted in a 16% decrease in carbon footprint per unit of beef compared 

to the 1970s (Capper, 2011), the beef industry has been further challenged to lower its 

contribution to greenhouse gas (GHG) emissions. The rumen serves as a fermentation vat 

equipped with various microbial populations allowing cattle to digest and convert plant 

product such as cellulose into high-quality proteins like meat and milk (Layman, 2018). 

Enteric CH4 production is critical in anaerobic fermentation and ruminal H2 recycling 
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(Sharp et al., 1998), but does represent an energetic loss for the animal ranging from 2 to 

12% of gross energy intake (GEI) depending on diet (Johnson and Johnson, 1995).  

One proposed method to reduce CH4 production in cattle is by feeding a product 

called biochar. Biochar is produced by burning organic matter at high temperatures in the 

absence of oxygen (Hansen et al., 2012), resulting in a carbonized charcoal product. 

When included in the ruminant diet, there are several theories on the mode of action of 

biochar for affecting methane production, which stem from the porous nature and large 

surface area of the product. Biochar may adsorb CH4 gas in the rumen, may increase the 

inert surface area in the rumen impacting the microbial community, or may alter the 

rumen microbial population (Leng et al., 2013, 2014; Saleem et al., 2018). When biochar 

was included in vitro in high-forage diets, such as cassava root (Leng et al., 2012b) and 

barley silage (Saleem et al., 2018), a reduction in CH4 production was observed. 

However, when biochar was included in vitro in a combined oaten pasture, maize silage, 

and concentrate diet, no difference in CH4 production was observed (Teoh et al., 2019). 

Previous literature evaluating the effect of feeding biochar on enteric CH4 production in 

vivo has mixed results. Leng et al. (2012a) reported a 24% reduction in CH4 (ppm) 

production from cattle fed a basal diet of cassava root chips and foliage supplemented 

with 0.62% biochar produced from rice husks. Winders et al. (2019) included pine-

sourced biochar at 0, 0.8 and 3% of dietary DM in a growing and finishing experiment, 

reporting numerical reductions in CH4 production of 9.5 and 18.4% (g/kg DMI) at the 

0.8% inclusion rate in the growing and finishing trials, respectively. Biochar utilized in 

Winders et al. (2019) had a C content of 85%, bulk density of 88.10 kg/m3, and surface 

area of 323 m2/g. Contradictory to the findings of Leng et al. (2012a) and Winders et al. 
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(2019), Terry et al. (2019) reported no effect of pine-sourced biochar supplemented at 0, 

0.5, 1.0, and 2.0% dietary DM with a basal diet of 60% barley silage and 35% barley 

grain on CH4 production (g/kg DMI). There are a broad variety of biochars available, and 

the characterization of the product can differ significantly (McFarlane et al., 2017) based 

on organic matter source, burning or processing method, management, and transport. The 

variability between biochars utilized throughout the literature may be a factor in the 

mixed results as well as differences in basal diet fed and cattle type. The objectives of the 

following experiments were to determine the effects of wood-sourced biochar on cattle 

performance, carcass characteristics, CH4 and CO2 emissions from growing and finishing 

beef steers. 

Materials and Methods 

All procedures and animal management practices were approved by the 

University of Nebraska-Lincoln Institutional Animal Care and Use Committee (IACUC # 

1785). Biochar is not currently approved by the U. S. Food and Drug Administration 

(FDA) to be fed to cattle intended for human consumption. Prior to experiment initiation, 

a food use authorization from the FDA was obtained for cattle utilized in this experiment 

to enter the human food chain.   

Growing Experiment   

A 77-d feedlot growing experiment was conducted at the University of Nebraska-

Lincoln (UNL) Eastern Nebraska Research, Education, and Extension Center (ENREEC) 

near Mead, NE, to evaluate the impact of biochar inclusion in a forage-based diet on 

performance and CH4 emissions from cattle. Biochar utilized for both the growing and 

finishing experiments was provided by High Plains Biochar LLC (Laramie, WY) and was 

sourced from forest wood waste, primarily ponderosa pine trees. Biochar was processed 
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to a small particle size to reduce opportunity of cattle sorting in the bunk.  Six 

randomized grab samples of biochar collected through the growing and finishing periods 

were sent to Control Laboratories (Watsonville, CA) for chemical analysis. Dry matter of 

the biochar fluctuated with ambient moisture from 57 to 76% DM with an average of 

70%. On a DM basis, biochar carbon content was 82.8%, with a surface area of 426 m2/g, 

bulk density of 107.8 kg/m3, total N content of 0.7% of total dry mass, and pH of 9.49. 

Biochar particle size distribution ranged from less than 0.5 mm to 8 mm, with 

approximately 66% of sampled biochar measuring less than 2 mm and 1% of sampled 

biochar measuring greater than 4 mm.  

Steers (n=160; initial BW = 363 kg; SD = 16 kg) were assigned to two treatments 

(Table 2.1); a negative control growing diet (no biochar inclusion) and a growing diet 

with 0.8% biochar inclusion. Biochar was included at 0.8% in the growing experiment 

based on results from Winders et al. (2019), who demonstrated that biochar included at 

0.8% of the dietary DM had the greatest reduction in CH4 emissions when compared to a 

3.0% inclusion. Diets fed were identical between treatments other than the biochar 

inclusion, which replaced fine ground corn in the supplement. Biochar was weighed and 

mixed into the feed truck as an ingredient each day. Steers were stratified into 3 BW 

blocks, 3 reps in the light block, 4 reps in the middle block, 1 rep in the heavy block, and 

assigned randomly to pen (10 steers/pen). Pens were assigned randomly to treatment (n = 

16). Prior to initiation of the growing experiment, steers were individually identified and 

processed upon arrival to the ENREEC research feedlot. Steers were administered a 

modified live vaccine for prevention of infectious bovine rhinotracheitis, bovine viral 

diarrhea, parainfluenza 3, bovine respiratory syncytial virus, mannheimia haemolytica, 
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and pasteurella multocida (Vista, Merck Animal Health, Summit, NJ), a killed vaccine 

for clostridial toxoids and Histophilus somni (Ultrabac 7/Somubac, Zoetis Inc, 

Kalamazoo, MI), and an injectable solution for the treatment and control of 

gastrointestinal roundworms, lungworms, eyeworms, lice, and mites (Dectomax, Zoetis 

Inc., Kalamazoo, MI). Before experiment initiation, steers were limit-fed a common diet 

of 50% alfalfa hay and 50% Sweet Bran (Cargill, Blair, NE) offered at 2% of BW for five 

days to equalize gut fill (Watson et al., 2013). Steers were weighed in the morning before 

feeding on days 0 and 1 of the experiment and weights were averaged to establish initial 

BW. Steers were implanted with 80 mg trenbolone acetate and 16 mg estradiol (Revalor-

IS; Merck Animal Health, Summit, NJ) on day 1 of the experiment.  

Finishing Experiment   

A 111-d feedlot finishing experiment was conducted immediately following the 

growing experiment, utilizing the same group of steers. Steers (n=128; initial BW=480 

kg; SD=17 kg) remained in the same treatment groups as the growing experiment, and 2 

steers (lightest BW) were removed from each pen to better accommodate chamber space 

in the emission barn, reducing pen count from 10 to 8 steers per pen. Two treatments 

were evaluated in the finishing experiment (Table 2.2); a negative control finishing diet 

(no biochar inclusion) and finishing diet with 1.0% biochar inclusion, which replaced 

1.0% high-moisture corn (HMC) in the ration. Diets were identical other than biochar 

inclusion, and contained wheat straw, HMC, and Sweet Bran (Cargill, Blair, NE). 

Biochar was weighed and mixed into the feed truck as an ingredient each day. Steers 

were limit-fed a common diet of 50% alfalfa hay and 50% Sweet Bran offered at 2% of 

BW for 5 d to equalize gut fill. Steers were weighed in the morning before feeding on 
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days 0 and 1 of the finishing experiment and weights were averaged to establish initial 

BW. Steers were implanted with 200 mg trenbolone acetate and 20 mg estradiol 

(Revalor-200; Merck Animal Health, Summit, NJ) on d 1 of experiment. 

Feed was delivered to pens once daily at approximately 0800 h, aiming for trace 

amounts of feed in the bunk during time of feeding. Weekly grab samples of dietary 

ingredients were completed for determination of DM and as-fed proportions of ration 

ingredients were adjusted weekly if required. Weekly feed samples were composited by 

month and composites were analyzed for DM, OM, crude protein (CP), and neutral 

detergent fiber (NDF) content. Cattle were adapted to the finishing diet in 4 steps over 21 

d. Step 1 diets were fed from d 1 to 5 and contained (DM-basis) 35% Sweet Bran, 31% 

wheat straw, 29% HMC, and 5% supplement. Step 2 diets were fed from d 6 to 11 and 

contained 35% Sweet Bran, 24% wheat straw, 36% HMC, and 5% supplement. Step 3 

diets were fed from d 12 to 16 and contained 35% Sweet Bran, 17% wheat straw, 43% 

HMC, and 5% supplement. Step 4 diets were fed from d 17 to 21 and contained 35% 

Sweet Bran, 10% wheat straw, 50% HMC, and 5% supplement. Biochar at 1.0% of the 

dietary DM replaced HMC in each of the above steps for the biochar treatment. 

Steers were harvested at a commercial abattoir (Greater Omaha, Omaha, NE) at 

experiment completion. On the day of shipping, pens were offered 50% of the previous 

day’s feed offering at regular time of feeding. Cattle were loaded and shipped to the 

abattoir in the afternoon for slaughter the next morning. Hot carcass weights (HCW) were 

recorded on day of slaughter and USDA marbling scores, 12th rib fat thickness, and LM 

area were recorded after a 48-hr chill. Calculated yield grade was determined using the 

following equation (USDA, 2016): 2.50 + (0.98425 × 12th rib fat, cm) + (0.2 × 2.5 KPH, 
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%) + 0.00837 × HCW, kg) – (0.0496 × LM area, cm2), where KPH fat was assumed to 

average 2.5%. Carcass adjusted final BW was calculated from HCW divided by a 

common dressing percentage of 63%. 

Gas Emissions  

The UNL ENREC emission barn, equipped with a negative pressure system to 

monitor and record CH4 and CO2 production, was utilized for 8 consecutive weeks to 

monitor emissions from growing steers, followed by an additional 8 consecutive weeks to 

monitor emissions from finishing steers. The emission barn, as described by Winders et 

al. (2020), has 2 isolated pens (no emission cross-over) and operates using two air 

sensors, the LI-COR 7500 and LI-COR 7700 (LI-COR, Lincoln, NE) to monitor CO2 and 

CH4, respectively. Eight pens of cattle, 4 control and 4 biochar, were randomly selected 

to rotate through the methane barn by pairing replications within BW block, representing 

1, 2, and 1 rep from light, middle, and heavy block, respectively. Pairings were rotated 

through the barn for two 5-d periods, with each treatment represented in the barn 

concurrently. Each week, steers entered the barn Wednesday morning and remained in 

the barn until Monday morning when they were returned to their respective feedlot pen.  

Manure CO2 and CH4 emissions were measured from the accumulation of 5 d of manure 

buildup and was calculated for the remainder of Monday when cattle were absent from 

barn. The barns were scraped clean using a skid steer each Tuesday to develop a baseline 

emission level post manure removal. Baseline emission levels of CO2 and CH4 were 

subtracted from manure emission levels of CO2 and CH4 and final values were divided 

over 5 days and 10 steers (growing experiment) or 8 steers (finishing experiment), to 

account for individual animal emissions. Following these steps, average CO2 and CH4 
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values of 16.89 g per steer and 0.08 g per steer, respectively, were subtracted from the 

daily emissions for CO2 and CH4 in the growing trial due to manure emissions, and an 

average CO2 and CH4 values of 17.45 g per steer and 0.07 g per steer, respectively, were 

subtracted from the daily emissions for CO2 and CH4 in the finishing trial. 

Statistical Analysis  

Performance and emissions data were analyzed using the MIXED procedure of 

SAS (SAS Institute, Inc., Cary, NC) with pen as the experimental unit. Performance data 

included BW block as a fixed effect. For emissions data in the growing experiment, day 

was a repeated measure. During the growing trial, 6 days (out of 40 total) were not usable 

for emissions measurement due to complications with the barn sensor recording. 

Concentrations of CO2 and CH4 reached greater than 60 ppm at certain points throughout 

the day, which may be beyond the capacity of the sensor for accurate measurement 

(Winders et al., 2020). Unexpectedly high concentrations of CO2 and CH4 in the growing 

experiment were due to housing 10 steers per chamber and the high inclusion of low-

quality forage in the diet. Emissions data in the finishing experiment utilized chamber as 

a fixed effect. Due to complications with the CO2 analyzer, CO2 emissions were averaged 

from one replication per treatment for each period. In addition, one replication (week two 

of finishing experiment barn rotations) had unusable data for CH4 emissions. Significance 

was considered at a £ 0.05 and a tendency was considered at 0.05 < a £ 0.10. 

Results and Discussion 

Growing Experiment   

There were no statistical differences in performance outcomes between biochar 

supplemented steers and control (P ≥ 0.23; Table 2.3). Numerically, average daily gain 

(ADG) was greater (P = 0.46) and dry matter intake (DMI) was lower (P = 0.23) for 
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biochar supplemented steers, resulting in a 2.9% improvement in feed efficiency for 

biochar treatment (P = 0.25). Although 8 replicates were analyzed per treatment, the 

limitation of studying only two treatments leads to insufficient statistical power, and G:F 

response should be further evaluated to determine repeatability. Although not significant, 

the numerical response in DMI was similar to that of previous research analyzing the 

impact of biochar supplementation in high-forage diets (Winders et al., 2019; Terry et al., 

2020). Winders et al. (2019) demonstrated that as biochar inclusion in a high forage diet 

(21% brome hay, 20% wheat straw, 30% corn silage, 22% WDGS) increased from 0 to 

3.0%, DMI numerically decreased. In a backgrounding experiment by Terry et al. (2020) 

evaluating the inclusion of 0, 0.5, 1.0, or 2.0% enhanced pine biochar in a 60% barley 

silage and 30% barley grain diet on steer performance, DMI and ADG were numerically 

the lowest at the highest biochar inclusion level (2.0%). Additionally, Conlin et al. (2021) 

fed varying pine-sourced biochar inclusions at 0, 1, 2 and 3% of diet DM to multiparous 

cows fed a high-forage diet (50% alfalfa haylage, 30% wheat straw, 17% corn silage) and 

found no impact on DMI or ADG between treatments. These results were dissimilar to 

Leng et al. (2012a), who reported a tendency for Bos indicus type cattle fed a high-forage 

diet supplemented with rice husk biochar to have improved live weight gain. Diet 

composition (specifically forage quality) and type of cattle may be the reason for the 

differing results. 

Finishing Experiment 

Biochar-supplemented steers had a significant decrease in dry matter intake 

(DMI; P < 0.01) and average daily gain (ADG; P = 0.02) and tended to have a lighter 

carcass adjusted final BW (P = 0.10) compared to the control (Table 2.4). Feed efficiency 
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did not statistically differ between the two treatments, however, steers fed biochar had a 

reduction of 3.2% in feed efficiency compared to control steers (P = 0.22). The 

significant reduction in DMI observed for biochar-fed steers in the finishing experiment 

is dissimilar to the results in previous literature (Winders et al., 2019; Terry et al., 2020). 

Winders et al. (2019) looked at the effects of pine-sourced biochar inclusion at 0, 0.8, and 

3.0% of dietary DM in a finishing diet (53% dry-rolled corn, 15% corn silage, 15% 

WDGS) on steer performance, observing the greatest numerical DMI (kg/d) for steers 

supplemented biochar at the 0.8% level. Terry et al. (2020) demonstrated that 

supplementing enhanced pine biochar at 0, 0.5, 1.0 or 2.0% in a 85% barley grain and 

10% barley silage finishing diet did not significantly impact DMI, and although intake 

was lowest (kg/d) for the 2.0% biochar inclusion, intake was the greatest for 0.5% 

biochar inclusion. 

The reduction in ADG for biochar-supplemented steers in the finishing 

experiment are congruent with Terry et al. (2020) who reported a numerical decrease in 

overall ADG and total weight gain when enhanced pine biochar was included at 2.0% of 

a high-grain diet. This reduction in gain may be attributed to the replacement of 1.0% 

HMC in the current finishing experiment and 2.0% of the TMR in Terry et al. (2020), as 

biochar has been described as largely indigestible within the rumen (Terry et al., 2019).  

Biochar-fed steers tended to be lighter in hot carcass weight (HCW; P = 0.10) 

with numerically reduced 12th rib fat (P = 0.12), resulting in a significantly lower USDA 

calculated yield grade (P = 0.02) compared to the control. Reduced HCW and improved 

yield were a function of the significant reduction in DMI and ADG for biochar-fed steers 

compared to the controls. A Canadian experiment by Terry et al. (2020) reported no 
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significant difference in HCW between steers with or without biochar supplemented in a 

high-grain diet; however, the numerical trend of their data showed a reduction in HCW as 

biochar inclusion in the diet increased, where steers fed biochar at 2.0% of dietary DM 

were approximately 10 kg lighter than control steers. The Canadian experiment also 

reported a significant reduction in USDA yield grade for cattle fed biochar at 2.0% of 

diet, which may be influenced by the lighter HCW of steers supplemented with biochar. 

Results from the finishing experiment showed no difference in LM area or marbling (P ≥ 

0.93) which was congruent with Terry et al. (2020).  

Production of CH4 and CO2 

 Gas emissions of CH4 and CO2 were reported as g/steer and g/kg of DMI, where 

reported DMI (kg/d) used for the gas emission calculations were averaged from the 

weekly intakes of each treatment during rotation through the respective emission 

chambers. Emissions of CH4 and CO2 did not statistically differ between steers fed 

biochar and control treatments for the growing experiment (P ≥ 0.24; Table 2.3) or the 

finishing experiment (P ≥ 0.60; Table 2.4). In the growing experiment, CO2 and CH4 

emissions were numerically lower for control steers compared to biochar-supplemented 

steers when reported as g per day (4.0% lower) or g per kg of DMI (2.8% lower). Based 

on results from this experiment, there was no indication that feeding biochar reduces CH4 

emissions in growing steers, especially when considering biochar-fed steers had 

numerically lower DMI in the growing experiment and significantly lower DMI in the 

finishing experiment.  

Consistent with previous literature (Beauchemin and McGinn, 2006; Winders et 

al., 2019), CH4 production (reported as g/steer and g/kg of DMI) was greater in the 
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growing experiment compared to the finishing experiment due to differences in diet 

composition and quality. Beauchemin and McGinn (2006) estimated losses due to enteric 

CH4 production as around 6% of gross energy intake (GEI) for forage-fed cattle and 3.5% 

for concentrate-fed cattle. Leng et al. (2012a) reported a 24% reduction in CH4 (ppm) 

production from cattle native to Southeast Asia when supplemented rice husk biochar at 

0.62% of a high-forage (cassava root chip) diet. Winders et al. (2019) reported numerical 

reductions of 9.5 and 18.4% CH4 production (g/kg DMI) with pine-sourced biochar 

inclusion of 0.8% in high-forage and high-concentrate diets, respectively. Although the 

reductions in CH4 production from feeding biochar reported by Winders et al. (2019) 

were numerical differences, the limitation of statistical power with headbox trials 

encouraged us to further expand on the implications of feeding biochar in a pen setting.  

The mechanism by which dietary biochar inclusion reduces enteric CH4 

production is based on one or more of the following theories: biochar may adsorb ruminal 

CH4 gas, biochar may increase the inert surface area of the rumen resulting in greater 

opportunity for microbial colonization, and biochar may alter the rumen microbial 

community (Leng, 2014; Leng et al., 2013; Leng et al., 2012a). The mechanism by which 

biochar may adsorb CH4 in the rumen is no longer the leading theory accepted in 

literature, considering that previous studies reporting reductions in enteric CH4 

production included biochar at < 1.0% dietary DM (Winders et al., 2019; Leng et al., 

2012a), which is seemingly not an adequate quantity of biochar to adsorb the volume of 

gas. The porous nature and large surface area of processed biochar supports the theory by 

which biochar increases the opportunity for microbial colonization, potentially resulting 

in an alteration of the rumen microbial community. The increase in surface area provided 
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by dietary biochar may provide a functional site for microbial biofilm formation within 

the rumen (Leng, 2014). Improved biofilm formation may support improved efficiency of 

microbial growth and proliferation and, therefore, increased feed degradation (Leng, 

2014; Leng et al., 2012a).  

 Dissimilar to Leng et al. (2012a), Conlin et al. (2021) fed multiparous cows a 

high-forage diet with pine-sourced biochar inclusions at 0, 1, 2, and 3% of diet, and 

reported no impact on CH4 emissions. Biochar utilized in Conlin et al. (2021) was of 

similar characterization to the biochar utilized in the present experiment, with a carbon 

content (as % of dry mass) of 83.6%, surface area of 456 m2/g, bulk density of 78.5 

kg/m3, and pH of 10.5. Type of diet, physical properties of the biochar, and inclusion 

percentage of biochar in the diet are all potential reasons for differing emission and 

performance results between studies. 

In conclusion, pine-sourced biochar included at 0.8% of diet DM during the 

growing experiment did not impact cattle performance or CH4 emissions; however, 

during the finishing experiment, biochar inclusion at 1.0% diet DM reduced DMI and 

ADG, resulting in a tendency for reduced HCW and a significant improvement in lean 

carcass yield grade, with no impact on CH4 emissions.  
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Table 2.1. Composition of diet (DM) fed to steers in growing 
experiment (77 days on feed)  
                Treatments 
Ingredient, % of diet DM  Control Biochar 
Wheat straw 40 40 
Corn silage   40 40 
MDGS1 15 15 
Supplement2   
  Finely ground corn  2.188 1.408 
  Biochar -  0.800 
  Limestone  1.310 1.310 
  Tallow 0.125 0.105 
  Urea 1.000 1.000 
  Salt  0.300 0.300 
  Beef trace mineral 0.050 0.050 
  Vitamin A-D-E 0.015 0.015 
  Rumensin-903 0.012 0.012 
Nutrient analysis, %   
   DM               65.3 65.1 
   OM               90.3 90.3 
   Crude Protein                 9.7   9.7 
   Neutral Detergent Fiber               57.5 57.5 
1MDGS = Modified distillers grains plus solubles.  
2Supplement fed at 5% of dietary DM.  
3Formulated to supply monensin (Rumensin-90; Elanco Animal 
Health; Greenfield, IN) at 200 mg/steer daily 
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Table 2.2. Composition of diet (DM) fed to steers in finishing experiment (111 
days on feed)  
 Treatments 
Ingredient, % of diet DM  Control Biochar 
High-moisture corn                   55                  54 
Sweet Bran1                   35                  35 
Wheat straw                     5                    5 
Biochar2  -                    1 
Supplement3   
  Finely ground corn      2.879    2.879 
  Limestone      1.630    1.630 
  Tallow     0.100    0.100 
  Salt      0.300    0.300 
  Beef trace mineral     0.050    0.050 
  Vitamin A-D-E     0.015    0.015 
  Rumensin-904     0.016    0.016 
  Tylan-405     0.010    0.010 
Nutrient analysis, %   
    DM                  69.3                 69.3 
    OM                  88.8                 88.8 
    Crude Protein                  13.4                 13.4 
    Neutral Detergent Fiber                  24.2                 24.2 
1Sweet Bran = branded wet corn gluten feed produced by Cargill (Cargill corn 
milling, Blair NE).  
2Biochar added as an ingredient to the feed truck and replaced high-moisture corn 
inclusion in the diet  
3Supplement fed at 5% of dietary DM.  
4Monensin (Rumensin; Elanco Animal Health, Indianapolis, IN) targeted to provide 
33 mg/kg dietary DM 
5Tylosin (Tylan; Elanco Animal Health) targeted to provide 90 mg/steer daily 
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Table 2.3. Effect of pine-sourced biochar addition at 0.8% of dietary DM 
on performance and gas emissions of growing steers  
 Treatments   
 Control Biochar SEM P-value 
Performance     

Initial BW, kg   363   363 0.91 0.96 
Ending BW, kg   477   479 2.04 0.50 
DMI, kg/d       8.57       8.45 0.08 0.23 
ADG, kg       1.45       1.47   0.023 0.46 
Gain:Feed       0.170       0.175   0.003 0.25 

Gas emissions      
DMI, kg/steer1       9.6       9.7 0.11 0.52 
CH4, g/steer   196.2   203.8 6.62 0.45 
CH4, g/kg of DMI     20.5     20.9 0.66 0.60 
CO2, g/steer  5725 5982  143.1 0.25 
CO2, g/kg of DMI     561.3   581.4     10.8 0.24 

1Dry matter intake (DMI) was used to unitize reported emissions and was 
averaged from the weekly intakes of each treatment during rotation through the 
respective emission chambers  
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Table 2.4. Effects of pine-sourced biochar addition at 1.0% dietary DM on 
performance, carcass characteristics, and gas emissions of finishing steers  
            Treatments   
 Control Biochar SEM P-value 
Performance     

Initial BW, kg 479 481 2.08 0.55 
Carcass Adjusted Final 

BW1, kg 
667 658 4.00 0.10 

DMI, kg/d     13.4      13.1 0.06       <0.01 
ADG, kg        1.69          1.59 0.03 0.02 
Gain:Feed          0.126            0.122   0.002 0.22 

Carcass characteristics      
HCW, kg  420 415        2.5 0.10 
LM area, cm2     95.5      94.8 0.90 0.93 
Marbling2 455 455      10.2 0.97 
12th rib fat3, cm         1.55          1.45   0.046 0.12 
Calculated yield grade          3.23          3.18   0.041 0.02 

Gas emissions      
DMI, kg/steer4      11.8       12.0  0.55 0.59 
CH4, g/steer    168.7     165.7  5.60 0.71 
CH4, g/kg of DMI      15.0       14.3  0.95 0.60 
CO2, g/steer       6282       6173     375 0.87 
CO2, g/kg of DMI     589.7       523.6     143 0.80 

1Carcass adjusted final BW was determined from hot carcass weight (HCW) divided by 
common dressing percentage of 63%. 
2Marbling score: 400= small00, minimum required for U.S. Low Choice  
312th rib fat, cm: calculated by back-calculating from the USDA YG equation  
4Dry matter intake (DMI) was used to unitize reported emissions and was averaged from 
the weekly intakes of each treatment during rotation through the respective emission 
chambers  
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Abstract 

 
Two nutrient mass balance experiments were conducted during winter and summer 

seasons to evaluate the effects of spreading unprocessed Eastern red cedar biochar onto 

the feedlot pen surface on manure nutrient capture and cattle performance. A 186-d 

feedlot finishing experiment was conducted from December to June (WINTER) and a 

subsequent 153-d finishing experiment was conducted from June to November 

(SUMMER). The WINTER experiment evaluated three treatments, including biochar 

spread to pen surface during the feeding period (24 kg/steer; 10 steers per pen), hydrated 

lime spread to pen surface at end of feeding period (31 kg/steer), and control (no 

treatment applied). The SUMMER experiment evaluated biochar treatment (31 kg/steer; 

8 steers per pen) against control. There was no difference in N and P intake, retention, or 

excretion (P ≥ 0.38) between WINTER treatments. Steer performance (P ≥ 0.10) and 

carcass characteristics (P ≥ 0.50) were not impacted by pen treatment in WINTER. 

Nitrogen and P intake and excretion (P ≥ 0.35) were similar between treatments in 

SUMMER and retention of N and P was significantly greater for the biochar treatment (P 

£ 0.04) due to greater ADG (P = 0.05). There was no difference in DMI (P = 0.48) in 

SUMMER, steers on biochar pen treatment had heavier HCW (P = 0.05) and increased 

ADG, resulting in improved feed efficiency (P = 0.08). In both experiments, biochar 
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addition to the pen surface tended (P = 0.07) to increase manure N as a percent of manure 

DM, but this increase in N concentration did not impact kg of N removed from the 

feedlot pens (P ≥ 0.15) or N losses (P ≥ 0.68). The addition of red cedar biochar to the 

feedlot pen surface did not improve manure nutrient capture of N or P and did not reduce 

N losses associated with soil-based feedlot pens.  

Keywords:  biochar, feedlot manure, mass balance  

 

Introduction 

 
Typical beef feedlot finishing diets in the U.S. combine high inclusions of 

concentrate (grains) with a variety of byproducts, crop residues and forages that 

incorporate high quantities of N, P and soluble salts of which not all are retained by the 

animal. Of total N offered in the diet, beef cattle retain approximately 12% of fed N and 

15% of fed P (Kissinger et al., 2007), with the remainder excreted onto the feedlot pen 

surface. Once excreted onto the pen surface, the manure nutrients can be 1) volatilized off 

as ammonia (NH3) emission (only N); 2) lost as precipitative runoff and captured in a 

runoff retention pond; or 3) removed in manure during pen cleaning. The opportunity for 

manure N loss on open dirt feedlot pens is a risk to the environment, public health, and 

poses a potential economic loss in the value of manure as a fertilizer. The environmental 

risks include water quality concerns from the deposition of N from manure fertilizer 

application contributing to eutrophication, air quality degradation due to NH3 

volatilization, and the potential for nitrous oxide (N2O) formation and its implications as 

a GHG on climate change (USDA Agricultural Air Quality Task Force, 2014; USEPA, 

2004).  
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Immediately following excretion of urine and feces from the animal, NH3 

formation and volatilization occur rapidly due to abundant urease activity in the feces and 

soil (Bussink and Oenema, 1998), with manure N losses via volatilization ranging from 

43 to 64% of fed N (Homolka et al., 2021). Seasonal differences in manure N loss via 

NH3 volatilization occur due to the impacts of temperature and moisture conditions on 

feedlot pen surface microbial activity and the speed of chemical reactions with greater 

losses occurring during summer feeding periods (Gilbertson et al., 1971; Homolka et al., 

2021; Hristov et al., 2011; Kissinger et al., 2007). Various feedlot management strategies, 

such as sawdust application (Lory et al., 2002) and increased dietary bran inclusion 

(Adams et al., 2004), have shown that as OM content is increased on the pen surface, 

greater N is retained in the manure and N losses via NH3 volatilization are reduced.  

 One proposed method of improving manure nutrient capture of N and P is to 

apply biochar to the feedlot pen surface. Biochar is produced by burning OM (typically 

forest industry byproducts) at high temperatures in the absence of oxygen (Hansen et al., 

2012) resulting in an end-product that is high in C content. When biochar is utilized as a 

soil amendment, improvements in crop yields and soil fertility (Atkinson, Fitzgerald and 

Hipps, 2010; Ding et al., 2016) and reductions in emissions of N2O and CH4 from crop 

fields have been observed (Cayuela et al., 2014; Karhu et al., 2011). The addition of 

biochar to various livestock wastes has resulted in reductions of N2O emission, 

potentially due to the high surface area and sorptive capacity of biochar, reducing the 

availability of N for N2O formation (Agyarko-Mintah et al., 2017; Kammann et al., 

2015). Agyarko-Mintah et al. (2017) reported a 65 to 75% reduction in N2O emissions 

(mg/kg of compost-biochar mixture) when biochar made from litter and green waste was 
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added to a compost mixture of poultry litter and straw at 10% of compost DM. Similarly, 

Li et al. (2016) observed a 54% reduction in N2O emissions when wheat straw biochar 

was added to cattle manure and rice straw compost mix at 3% (w/v). In addition to 

reducing N loss from livestock waste, adding biochar to the feedlot pen surface may also 

improve pen surface (moisture) conditions (Maharjan and Wilke, 2021).  

 The objective of these experiments was to evaluate the effects of applying wood-

sourced biochar to the feedlot pen surface during winter and summer feeding periods on 

manure nutrient capture of N and P.  

Materials and Methods 

All procedures and animal management practices were approved by the 

University of Nebraska-Lincoln Institutional Animal Care and Use Committee (IACUC # 

1785).  

Feedlot Performance  

Two experiments were conducted at the University of Nebraska-Lincoln (UNL) 

Eastern Nebraska Research, Extension and Education Center (ENREEC) near Mead, NE, 

to evaluate the impact of biochar addition to the feedlot pen surface on manure nutrient 

capture. A 186-d feedlot finishing experiment was conducted from December to June  

(WINTER) and a subsequent 153-d feedlot finishing experiment was conducted from 

June to November (SUMMER) of 2020. 

In WINTER, crossbred calves (n=150; initial BW=274 kg; SD=7 kg) were 

assigned to three treatments; negative control, biochar application to pen surface, and 

hydrated lime (calcium hydroxide) application to pen surface. Unprocessed biochar made 

from Eastern red cedar trees was applied to the pen surface in equal weights 

(approximately 123 kg dry matter (DM) per pen) at trial initiation in December and again 
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in February (total of 246 kg DM per pen). Lime treatment was applied to the pen surface 

(approximately 308 kg DM per pen) one day prior to shipping cattle for harvest. The 

application of lime to the feedlot pen surface was in cooperation with UNL 

Environmental Engineering to determine the impact of lime on microbial activity on the 

pen surface. The alkaline stabilization properties of lime are hypothesized to reduce 

antimicrobial resistant bacteria in cattle manure. However, increasing the pH of the pen 

surface may increase NH3 volatilization, as the speed of hydrolysis from NH4 to NH3 is 

increased as pH of the pen surface approaches an equilibrium point at pKa greater than 9.  

Pens were assigned randomly to treatments (5 pens/treatment) and steers were 

assigned randomly to pens (10 steers/pen). The WINTER finishing diet contained 51% 

high-moisture corn (HMC), 20% Sweet Bran (Cargill Corn Milling, Blair, NE), 15% corn 

silage, and 10% modified distillers grains, with a mean dietary crude protein (CP) level of 

13.7% and dietary P level of 0.45% (Table 3.1).  

In SUMMER, crossbred yearlings (n=80; initial BW=339 kg; SD=7 kg) were 

assigned to two treatments; negative control and biochar application to pen surface. 

Unprocessed biochar was applied to the pen surface in equal volumes (approximately 123 

kg DM per pen) at trial initiation in June and again in August (total of 246 kg DM per 

pen). Pens were assigned to the same treatments (5 pens/treatment) as in the WINTER 

phase and steers were assigned randomly to pens (8 steers/pen). The SUMMER finishing 

diet contained 51% HMC, 40% Sweet Bran, and 5% cornstalks, with a mean dietary CP 

level of 14.5% and dietary P level of 0.53% (Table 3.1). 

Prior to initiating each of the experiments (WINTER and SUMMER), all steers 

were individually identified and processed upon arrival at the ENREEC feedlot. Steers 
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were administered a modified live vaccine for prevention of infectious bovine 

rhinotracheitis, bovine viral diarrhea, parainfluenza 3, bovine respiratory syncytial virus, 

mannheimia haemolytica, and pasteurella multocida (Vista, Merck Animal Health, 

Summit, NJ), a killed vaccine for clostridial toxoids and Histophilus somni (Ultrabac 

7/Somubac, Zoetis Inc, Kalamazoo, MI), and an injectable solution for the treatment and 

control of gastrointestinal roundworms, lungworms, eyeworms, lice, and mites 

(Dectomax, Zoetis Inc., Kalamazoo, MI). Steers were limit-fed a common diet of 50% 

alfalfa hay and 50% Sweet Bran offered at 2% of BW for five days to equalize gut fill 

(Watson et al., 2013). Steers were weighed in the morning before feeding on days 0 and 1 

of the experiments and weights were averaged to establish initial BW.  Feed was 

delivered to pens once daily at approximately 0800 h, aiming for trace amounts of feed in 

the bunk during time of feeding. Weekly grab samples of dietary ingredients were 

collected for determination of DM and as-fed proportions of ration ingredients were 

adjusted weekly as required. Weekly feed samples were composited by month and 

composites were sent to Ward Laboratories LLC (Kearney, NE) for nutritional and 

chemical analysis. On all samples, total N was determined using a combustion method N 

analyzer (AOCAC International, 1999: method 4.2.04). Ashing and digestion (AOAC, 

1990: method 648.08) of samples, followed by colorimetric analysis using the 

molybdovanadate method (AOAC, 1990: method 965.17) on a spectrophotometer 

(Molecular Devices SpectraMAX 250; 400nm) was used to determine total P content.  

Steers were implanted with 80 mg trenbolone acetate and 16 mg estradiol 

(Revalor-IS; Merck Animal Health, Summit, NJ) on d 1 of the experiments and 

reimplanted with 200 mg trenbolone acetate and 20 mg estradiol (Revalor-200; Merck 
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Animal Health, Summit, NJ) on d 76 and d 68 for WINTER and SUMMER, respectively. 

Steers were harvested at a commercial abattoir (Greater Omaha, Omaha, NE) upon 

completion of the WINTER and SUMMER feeding periods. On the day of shipping, 

cattle were offered 50% of the previous day’s offering at the regular time of feeding. 

Cattle were loaded and shipped to the abattoir in the afternoon for slaughter the next 

morning. Hot carcass weights (HCW) were recorded on the day of slaughter and USDA 

marbling scores, 12th rib fat thickness, and LM area were recorded after a 48- and 72-h 

chill for WINTER and SUMMER, respectively. Carcass chill for SUMMER included an 

additional 24-h compared to WINTER because of plant shutdown during the [USA] 

Thanksgiving holiday. Calculated yield grade was determined using the following 

equation (USDA, 2016): 2.50 + (0.98425 × 12th rib fat, cm) + (0.2 × KPH, %) + 0.00837 

× HCW, kg) – (0.0496 × LM area, cm2), where KPH fat was assumed to average 2.5%. 

Performance traits including final body weight (BW), average daily gain (ADG), and 

Gain:Feed (G:F) were calculated based on HCW adjusted to a common dressing 

percentage of 63. 

Nutrient Mass Balance  

Biochar utilized for the WINTER and SUMMER experiments was provided by 

Sawle Mill (Springview, NE), and was sourced from Eastern red cedar trees. Dry matter 

of the biochar fluctuated with moisture in the air from 85% to 95% DM with an average 

of 90%. Biochar samples were collected on both application dates for WINTER and 

SUMMER experiments and were sent to Control Laboratories (Watsonville, CA) for 

chemical analysis. On a DM basis, carbon (C) content of the biochar was 80.3%, with a 

surface area of 233 m2/g, bulk density of 155.4 kg/m3, total N content of 0.6% of DM 
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mass, and pH of 6.3. Biochar particle size distribution ranged from 0.5-mm to 50-mm, 

with approximately 70% of biochar sampled sizing >8-mm. Unprocessed biochar was 

utilized in both WINTER and SUMMER, expecting that cattle hoof action would reduce 

particle size.  

The nutrient mass balance experiments were conducted similar to experiments 

described by Bierman et al. (1999), Erickson and Klopfenstein (2001a), and Luebbe et al. 

(2012) on open dirt feedlot pens. Pens utilized in both WINTER and SUMMER 

experiments had a soil-based surface area of 176 m2 and total pen surface area of 262 m2, 

with a pen slope of 3%, and feed bunk space of 17.6 and 22 cm per steer in WINTER and 

SUMMER, respectively.  

 Twelve soil core samples (15-cm depth) were taken from each pen at the start 

(before cattle entered pens) and end of each experiment to correct for any change in soil 

nutrient concentration and to determine pen cleaning equivalence. Soil cores were 

collected by dividing the pens into 12 grids and collecting one core sample per grid to 

represent pen average. Once cattle were removed from pens on day 186 (WINTER) and 

153 (SUMMER) for slaughter, the pen surfaces were cleaned (< 24 h) in replication 

across treatments with a box scraper to remove waste material with minimal soil removal, 

and a skid steer to scrape the concrete apron and pile manure. The manure pile was mixed 

using the skid steer and during loadout from the concrete apron, 2 separate sets of manure 

samples were collected for nutrient analysis (n = 20 samples per pen) and DM 

determination (n = 10). Manure trucks were weighed to determine the weight of manure 

removed from each individual pen before transferring it to a storage lot.  
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All manure samples were frozen at -4°C to conserve N until either being oven-

dried for DM analysis or freeze-dried for nutrient analysis. Manure samples (analyzed in 

duplicate) were oven-dried at 60°C for 48 h (AOAC International, 1999; method 4.2.03) 

to determine DM content and, subsequently, DM removal from each pen. Pen soil core 

samples and manure samples collected for nutrient analysis were freeze-dried, ground to 

pass through a 1-mm screen (Wiley Mill), composited by pen (2 composites per pen for 

manure), and sent to a commercial laboratory (Ward Laboratories LLC, Kearney, NE) for 

analysis of N, P, K, and S contents (outlined by Homolka et al., 2021) utilizing the same 

procedures described for diet ingredients. 

Statistical Analysis  

Cattle performance, carcass characteristics, and nutrient mass balance data were 

analyzed using the MIXED procedure of SAS (SAS Institute, Inc., Cary, NC) with pen as 

the experimental unit for both WINTER and SUMMER experiments.  

Nutrient mass balance data were calculated using the methods outlined by Luebbe 

et al. (2012) and Homolka et al. (2021). Nutrient intake was determined based upon 

monthly feed ingredient composites and feed delivery and refusals on a pen basis. 

Nutrient retention and excretion were calculated utilizing methods established by 

NASEM (2016) and ASABE (2014). The N and P retained by the animal were calculated 

utilizing energy, protein, and P retention equations (NASEM, 2016). Nutrient excretion 

was then calculated by subtracting nutrient retention from nutrient intake. Runoff was not 

measured in this experiment, and generally only accounts for 1.5 to 2.5% of fed N loss 

and 4 to 6% of fed P loss from an open dirt lot (Homolka et al., 2021). Total nutrient loss 

(kg/steer) was calculated by subtracting recovered manure nutrients (corrected for soil 
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cores) from excreted nutrients. Significance was considered at a £ 0.05 and a tendency 

was considered at 0.05 < a £ 0.10. 

Results and Discussion 

Cattle Performance  

There were no significant differences in dry matter intake (DMI; P = 0.10), 

average daily gain (ADG; P = 0.50) or Gain:Feed (P = 0.98) due to pen treatment in 

WINTER (Table 3.2). Carcass characteristics were not impacted by pen treatments for 

cattle in WINTER (P ≥ 0.50). There was a significant increase in carcass-adjusted final 

BW (P = 0.05) and ADG (P = 0.05) for steers in biochar-amended pens in SUMMER 

(Table 3.3) compared to control, and no difference between treatments for DMI (P = 

0.48). This improvement in gain tended to improve feed efficiency (P = 0.08) for steers in 

biochar-treated pens compared to control and resulted in significantly heavier HCW (P = 

0.05) for biochar treatment. Results from SUMMER showed no difference in other 

USDA carcass parameters, including LM area, marbling, 12th rib fat, or yield grade (P ≥ 

0.76).  

  The significant increase in ADG and final BW for SUMMER steers on biochar-

amended pens may have been influenced by the moisture content of the pen surface 

(Maharjan and Wilke, 2021); however, pen surface moisture across time was not 

measured in this experiment. Maharjan and Wilke (2021) spread coal char (30% C) 

sourced from a sugar factory on feedlot pens in Nebraska at a rate of 625 kg per steer. 

Results from soil moisture sensors fixed on the pen surface indicated that following a 

series of snowfall events, the char amended pens were significantly drier than the 

controls. The biological and chemical properties of wood-sourced biochar may absorb 

water (Zhang, Chen, and You, 2016), thereby reducing the impact of moisture on the pen 
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surface and lessening the negative impacts of mud. The volume of biochar added to the 

pen surface per steer was greater in the SUMMER (31 kg) compared to WINTER (25 kg) 

experiment (because of fewer steers per pen in SUMMER), and the SUMMER feeding 

period had greater precipitation compared to WINTER (Table 3.4). In addition, biochar 

in the SUMMER experiment was spread at experiment initiation in June and again in 

August, with precipitation for the month of July reaching levels that were over double 

that of the 25-y average of annual precipitation. These factors suggest that the increased 

volume of biochar and the timing of application (during higher-than-average precipitation 

conditions) may have reduced the negative implications that moisture causes on the 

feedlot pen surface. Muddy feedlot pens contribute to poor animal performance and 

increased labor for feedyard personnel, ultimately increasing cost of gain (Mader, 2011). 

The 25-yr average of annual precipitation near Mead, NE, equates to approximately 76 

cm per year (WRCC, 2021; Table 3.4). Grandin (2016) suggests that controlling mud in 

open-lot pens becomes increasingly difficult when precipitation is greater than 51 cm per 

year. On average, steers on the biochar-amended pens in SUMMER were 17 kg heavier 

in carcass-adjusted final BW compared to controls, suggesting that the addition of 

biochar to the pen surface indirectly benefited steer performance.  

Nutrient Mass Balance  

In the WINTER experiment (Table 3.5), N intake, retention, and excretion were 

similar between treatments (P ≥ 0.42). The concentration of N in manure tended to differ 

between treatments (P = 0.07), with biochar-amended pens having the greatest manure N 

as a percent of manure DM. The manure N concentration as a percent of OM was the 

greatest for the control pens, and lowest for the lime-amended pens, with biochar-
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amended pens as an intermediate (P < 0.01) suggesting the change in manure N 

concentration on a DM basis is related to soil contamination in as-removed manure from 

pens. Less soil was removed from biochar-amended pens based on ash/OM 

concentrations resulting in greater manure N concentration as a % of manure DM due to 

less soil removed from the pen surface. The concentration of N as a % of OM being 

greatest for control pens suggests the change in N concentration as % of manure DM is 

not due to capturing more N due to biochar. In WINTER, P intake, retention, and 

excretion were all similar between treatments (P ≥ 0.38) and there was no difference 

between treatments in concentration of manure P (P = 0.23) as a percent of manure DM. 

Manure nutrient amounts (with correction for soil) were numerically greatest in the lime-

amended pens and lowest in the biochar-amended pens for N (P = 0.15) and P (P = 0.75). 

Manure nutrient losses were similar for all treatments and averaged 54% loss of N (P = 

0.37) and 0.43% loss of P (P = 0.87). The lime treatment had the highest numerical 

retention of N in the manure (P = 0.15), which was not expected based on the relationship 

between pH and NH3 volatilization and the high alkalinity of calcium hydroxide. The pH 

of the pen surface influences the speed of NH3 volatilization, where the ideal pH 

conditions for rapid volatilization are neutral (pH 7) to basic (pH 10; Hartung and Phillips 

et al., 1994). When surface pH drops below 6.5, research has shown that little NH3 

volatilization will occur, due to the pKa of ammonium (NH4) being less volatile than NH3 

(Rhoades et al., 2010). Conversely, the application of hydrated lime to the pen surface 

may have reduced the pen surface absorption of radiant energy resulting in a cooler 

surface, thereby reducing NH3 volatilization, however, the lime treatment was only 

applied to the pen surface on the final day of the experiment.  
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The quantity of DM removed from the pen surface in WINTER was numerically 

lowest for the biochar treatment (P = 0.17), which may have been influenced by the 

abnormally dry pen conditions at the conclusion of the WINTER experiment. Oven-dried 

manure samples averaged 92, 91, and 92% DM content for control, biochar, and lime, 

respectively, which was drier than expected for WINTER feeding periods, averaging 

around 64% in previous literature (Homolka et al., 2021).  

 In the SUMMER experiment (Table 3.6), N intake and excretion were similar 

between treatments (P ≥ 0.35) and steers in biochar-amended pens had significantly 

greater N retention compared to the control (P = 0.04). The intake and excretion of P was 

similar between treatments (P ≥ 0.35), and P retention was significantly greater for the 

biochar treatment compared to control (P = 0.03). Steers fed in biochar-treated pens had 

significantly greater ADG (P = 0.05), and final BW (P = 0.05), resulting in greater N and 

P retention compared to control steers. Manure N concentration as a percent of manure 

DM tended to be greatest for biochar treatment (P = 0.07) with no difference in manure P 

concentration as a percent of manure DM (P = 0.36). The increase in manure N as a % of 

DM was a reflection of removing more OM (originating feces and urine from cattle) and 

less ash (soil). When corrected for OM, the manure N concentration as a percent of OM 

tended to be the greater for the control treatment (P = 0.09). Manure nutrient losses were 

similar for biochar and control pens with 71% of excreted N (26.3 kg/steer; P ≥ 0.79) and 

10% of excreted P (0.85 kg/steer; P = 0.88) lost during the SUMMER experiment. Loss 

of 71% of excreted N is consistent with a 15-study analysis from 1999 to 2015 measured 

at the same location as these experiments, reporting an average of 73% loss of excreted N 

in SUMMER feeding periods (Homolka et al., 2021).  
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  Oven-dried manure samples averaged 55 and 56% DM content for control and 

biochar, respectively, suggesting that the feedlot pen surfaces in SUMMER were 

considerably wetter than the 15-study average of 70% DM reported by Homolka et al., 

2021. The quantity of manure DM removed from the pen surface in SUMMER tended to 

be less for the biochar amended treatment (P = 0.08). The percent of ash removed in the 

manure tended to be less for the biochar-amended pens compared to the control (P = 

0.06), indicating that less soil was removed from the pen surface in biochar-amended 

pens. Due to the wet conditions during feedlot pen cleaning, the manure-soil interface 

may have been difficult for the operator to identify.  

It was hypothesized that biochar addition to the feedlot pen surface would 

improve manure N capture because of the high C content (80.3% C on DM basis) of the 

biochar utilized in this experiment. In both WINTER and SUMMER, biochar addition to 

the pen surface tended to increase manure N as a percent of manure DM (P = 0.07) and 

manure OM content (P £ 0.09), but this increase in N concentration did not translate into 

increased kg of N or P removed from the biochar-amended pens, because there was less 

manure DM removed from these pens. Results from these experiments were incongruent 

with previous literature regarding various feedlot management strategies aiming to 

increase C content of the pen surface to reduce nutrient loss. Lory et al. (2002) looked at 

the impact of sawdust application to the feedlot pen surface on N losses in winter and 

summer feeding phases, concluding that application of a product high in C to the pen 

surface (such as sawdust) reduced N losses during summer months. Adams et al. (2004) 

utilized sawdust as an OM addition to the pen surface, comparing it to a treatment where 

cattle had a dietary inclusion of 30% greater corn bran in the diet, and a negative control 
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treatment (no sawdust or dietary bran addition). The higher inclusion of bran in the diet 

was designed to decrease diet digestibility, thereby increasing OM excretion onto the pen 

surface. Adams et al. (2004) found that adding OM to the pen surface, either as a pen 

amendment (sawdust) or by increasing OM excretion, increased manure N content by 

20% compared to the control during winter/spring months. Bierman et al. (1999) and 

Erickson and Klopfenstein (2001b) reported similar results to Adams et al. (2004), where 

feeding less-digestible diets resulted in increased OM excretion on the pen surface and 

improved manure nutrient capture.  

 As expected, manure N recovery in the WINTER experiment was greater than the 

SUMMER experiment, averaging 54 and 71% loss of excreted N across treatments in the 

WINTER and SUMMER feeding experiments, respectively. These observations are 

consistent with Homolka et al. (2021) who reported losses of 50 and 73% of excreted N 

for winter and summer feeding periods, respectively. The greater N loss observed in 

summer feeding experiments compared to winter is well defined in literature, where 

warmer temperatures (>21°C) increase the speed of hydrolysis of urea, equating to faster 

rates of NH3 volatilization (Dari, Rogers, and Walsh, 2019). Kissinger et al. (2007) 

summarized the manure characteristics of 15 open-lot pens of cattle (n = 6,366) sourced 

from Nebraska feedlots over the course of a 1-yr feeding period, reporting N losses from 

volatilization and runoff to be 53 and 67% of fed N for winter and summer, respectively. 

In a Texas feedlot experiment conducted by Todd et al. (2008), N loss from manure via 

NH3 volatilization was 68% in the summer months and 36% in the winter months. The 

quantity of manure P collected in SUMMER, 48 g/steer daily, and WINTER, 36 g/steer 

daily, were substantially greater than values reported by Homolka et al. (2021), who 
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observed 17 g/steer daily in summer and 28 g/steer daily in winter. Kissinger et al. (2007) 

reported an average of 26 and 37 g/steer daily in summer and winter feeding periods, 

respectively, from 6 commercial feedlots. Of the 15 experiments that Homolka et al., 

2021 reported, the average dietary P concentration was 0.36%, with the maximum dietary 

P concentration at 0.49% of dietary DM. The diets fed in SUMMER and WINTER had a 

P concentration of 0.53 and 0.45% of dietary DM, respectively, influenced by the greater 

inclusion of byproduct in the diet compared to Homolka et al., 2021.  

The DM removal from the WINTER experiment was 27% greater and manure N 

capture was improved by 28.5% averaged across treatments compared to the SUMMER 

experiment. These results are consistent with Kissinger et al. (2007), who summarized 

data from six Nebraska feedlots representing 15 feeding pens with 40 separate lots of 

cattle fed in those pens, equating to 6,366 head of cattle; concluding that manure 

harvested after a winter feeding period is about 20% more than that of manure harvested 

following a summer feeding period, and that manure harvested after winter feeding has 

significantly greater retention of excreted N compared to summer. The significant 

improvement in N recovery in manure during winter is likely due to less N volatilization 

during winter feeding months compared to summer feeding months (Kissinger et al., 

2007). 

Results from these experiments suggest that the addition of unprocessed Red 

cedar biochar to the feedlot pen surface (25 to 31 kg per steer) did not improve manure 

nutrient retention and did not reduce N losses. In both experiments, biochar addition to 

the pen surface tended to increase manure N as a percent of manure DM, but this increase 

in N concentration did not translate into increased kg of N or P removed from the feedlot 
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pens.  Biochar addition to the feedlot pen surface did improve growth performance of 

steers in the SUMMER feeding experiment, although no differences were found in 

growth performance for the WINTER feeding experiment.  
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Table 3.1. Composition of diet (DM) fed to steers in WINTER and 
SUMMER mass balance experiments 
 Experiment 
Item WINTER  SUMMER  
Ingredient, % dietary DM     
  High-moisture corn 51 51 
  Sweet bran1 20 40 
  Corn silage 15 -- 
  MDGS2 10 -- 
  Cornstalks  --  5 
Supplement3   
  Finely ground corn       1.89      1.89 
  Limestone       1.63      1.63 
  Salt         0.300        0.300 
  Tallow        0.100        0.100 
  Beef trace mineral         0.050        0.050 
  Rumensin-904        0.015        0.015 
  Vitamin A-D-E        0.014        0.014 
  Tylan-405        0.010        0.010 
Nutrient analysis, %   
  Dry matter 57.7  66.9 
  Organic matter 92.6  92.4 
  Crude protein 13.7  14.5 
  Neutral detergent fiber    18.89    20.07 
  P     0.45     0.53 
  K    0.69     0.73 
  S    0.20     0.21 
1Sweet Bran = branded wet corn gluten feed produced by Cargill (Cargill Corn 
Milling, Blair, NE). 
2MDGS = Modified distillers grains plus solubles.  
3Supplement fed at 4% of dietary DM. Ractopamine hydrochloride 
(Optaflexx; Elanco Animal Health; Indianapolis, IN) was fed for last 28 d 
prior to harvest in WINTER experiment targeted to provide 300 mg/steer daily 
and replaced finely ground corn in the supplement. 
4Monensin (Rumensin; Elanco Animal Health) targeted to provide 33 mg/kg 
dietary DM. 
5Tylosin (Tylan; Elanco Animal Health) targeted to provide 90 mg/steer daily. 
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Table 3.2. Performance and carcass characteristics for steers fed the same diet with 
different pen amendments in WINTER phase  
 Treatments1   
 Control Biochar Lime SEM P-value 
Performance      

Initial BW, kg  274         274      274      1.3 0.95 
Final BW2, kg  618         622      628      5.7 0.50 
DMI, kg/d        10.0      10.1   10.3  0.04    0.10 
ADG, kg            1.86           1.87       1.90    0.029 0.50 
Gain:Feed              0.185            0.186          0.185      0.0022 0.98 

Carcass characteristics      
HCW, kg       390         392  396  3.5 0.50 
LM area, cm2  86.5      87.7       87.7    1.29 0.76 
Marbling3       472         463  476  13.71 0.79 
12th rib fat4, cm       1.45          1.40          1.42      0.051 0.79 
Calculated yield 
grade  

       3.43          3.38          3.40      0.050 0.78 

1Control = no treatment applied; Biochar = red cedar biochar applied in Dec and Feb at 
123 kg per pen for each application; Lime = applied 1 d prior to cattle harvest 
approximately 308 kg per pen.  
2Carcass adjusted final BW determined from HCW divided by common dressing 
percentage of 63%. 
3Marbling score: 400= small00, minimum required for U.S. Low Choice.  
412th rib fat, cm: calculated by back-calculating from the USDA YG equation. 
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Table 3.3. Performance and carcass characteristics for steers fed the same 
diet with different pen amendments in SUMMER phase  
 Treatments1   
 Control Biochar SEM P-value 
Performance     

Initial BW, kg      339  339    1.08 0.92 
Final BW2, kg      665  682    5.99 0.05 
DMI, kg/d        12.1     12.2      0.045    0.48 
ADG, kg          2.13       2.24      0.039 0.05 
Gain:Feed          0.176       0.184        0.0032 0.08 

Carcass characteristics      
HCW, kg       419  429        5.3 0.05 
LM area, cm2        92.7    93.0    1.67 0.89 
Marbling3      492  499      15.1 0.76 
12th rib fat4, cm          1.50      1.50      0.090 0.98 
Calculated yield grade           3.48      3.48      0.065 0.98 

1Control = no treatment applied; Biochar = red cedar biochar applied in 
June and August at 123 kg per pen for each application. 
2Carcass adjusted final BW determined from HCW divided by common 
dressing percentage of 63%. 
3Marbling score: 400= small00, minimum required for U.S. Low Choice. 
412th rib fat, cm: calculated by back-calculating from the USDA YG 
equation. 
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Table 3.4. Monthly precipitation (cm) for WINTER and SUMMER 
compared to 25-year average monthly precipitation for the Eastern 
Nebraska Research, Education and Extension Center located near Mead, 
NE.  
 Phase  
Month WINTER SUMMER 25-Year Average1 
December  6.50 -   2.95 
January  3.28 -   1.47 
February  0.28 -   2.08 
March  4.24 -   3.71 
April    1.91 -   7.70 
May 11.63 - 12.75 
June2   1.63   6.27 11.63 
July - 14.66   6.81 
August -   3.23   9.83 
September -   4.01   8.05 
October -   0.94   5.79 
November -   3.18   3.18 
Total precipitation3  29.47  32.29   75.95 
1Monthly average precipitation (cm) from 1995 to 2020 for Mead, NE, sourced 
from the Western Regional Climate Center (WRCC, 2021). 
2WINTER phase included precipitation from June 1st through 18th, SUMMER 
phase included precipitation from June 19th through 30th.  
3Total precipitation for WINTER and SUMMER combined = 61.76 cm  
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Table 3.5. Effect of biochar and lime pen amendments on manure nitrogen (N), 
phosphorus (P) and organic matter (OM) during WINTER1  
 Treatments2    
 Control Biochar Lime SEM P-value 
Nitrogen      
  N Intake, kg/steer 41.4 41.8      42.4 0.5 0.46 
  N Retention3, kg/steer   7.3   7.4  7.4 0.1 0.60 
  N Excretion4, kg/steer 34.1 34.4      34.9 0.5 0.42 
  N Manure5, kg/steer 15.4 15.2 16.8 0.6 0.15 
  N Lost, kg/steer 18.7 19.2 18.1 0.9 0.68 
  N Lost, %6 54.9 55.7 51.7 2.0 0.37 
Phosphorus       
  P Intake, kg/steer  8.5  8.6   8.7 0.1 0.43 
  P Retention3, kg/steer  1.8  1.8   1.8   0.01 0.60 
  P Excretion4, kg/steer  6.7  6.8   6.9 0.1 0.38 
  Manure P5, kg/steer  6.7  6.6   7.0 0.4 0.75 
  P Lost, kg/steer      0.005      0.181      -0.086     0.363 0.87 
  P Lost, %6         -0.1  2.7  -1.3 5.3 0.87 
Manure characteristics       
  DM, %        92.0      91.1       91.7       0.01 0.42 
  DM Removed, kg/steer      446.7    360.1     450.8     35.6 0.17 
  OM, %        35.1      40.3       37.8       1.5 0.09 
  OM Removed, kg/steer      157.8    144.7     168.7     13.7 0.48 
  Manure N, % of DM      1.57      1.71        1.51   0.06 0.07 
  Manure N, % of OM      4.50a      4.25b      4.00c   0.07   <0.01 
  Manure P, % of DM    0.69    0.76     0.69     0.031 0.23 
  Ash, %        64.9      59.7       62.2       1.5 0.09 
1Values expressed as kg/steer over entire feeding period (186 days on feed). 
2Control = no treatment applied; Biochar = red cedar biochar applied in Dec and Feb at 
123 kg per pen for each application; Lime = applied 1 d prior to cattle harvest 
approximately 308 kg per pen. 
3Calculated using the NASEM (2016) net energy, protein, and P retention equations.  
4Calculated as nutrient intake –retention. 
5Manure N or P with correction for soil N or P. Soil nutrient concentration evaluated 
before and after WINTER experiment to account for all nutrients remaining or in excess 
on the pen surface.  
6Calculated as nutrient (N or P) lost divided by nutrient (N or P) excretion.  
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Table 3.6. Effect of biochar as a pen amendment on manure nitrogen (N), 
phosphorus (P) and organic matter (OM) during SUMMER1 

 Treatments2   
 Control Biochar SEM P-value 
Nitrogen     
  N Intake, kg/steer 43.4 43.9 0.6 0.35 
  N Retention3, kg/steer   6.5   6.8 0.1 0.04 
  N Excretion4, kg/steer 36.9 37.1 0.5 0.67 
  N Manure5, kg/steer 10.5 11.2 1.8    0.78 
  N Lost, kg/steer 26.4 25.9 2.0 0.85 
  N Lost, %6 71.6 69.6 5.0 0.79 
Phosphorus     
  P Intake, kg/steer   9.8   9.9 0.1 0.35 
  P Retention3, kg/steer   1.6  1.7   0.01 0.03 
  P Excretion4, kg/steer   8.2  8.3 0.1 0.69 
  Manure P5, kg/steer   7.5 7.3 1.0 0.90 
  P Lost, kg/steer    0.7 1.0 1.1 0.88 
  P Lost, %6   8.5      11.4      13.1 0.88 
Manure characteristics     
  DM, %         55.2      55.8        0.01 0.72 
  DM Removed, kg/steer        267.1    233.6      16.6 0.08 
  OM, %         44.2      50.1        1.94 0.06 
  OM Removed, kg/steer       117.0    116.1        5.2 0.87 
  Manure N, % of DM     2.01     2.20   0.06    0.07 
  Manure N, % of OM     4.57     4.39   0.07 0.09 
  Manure P, % of DM     1.06   1.13   0.06 0.36 
  Ash, %         55.8      49.9        1.94 0.06 
1Values expressed as kg/steer over entire feeding period (153 days on feed). 
2Control = no treatment applied; Biochar = red cedar biochar applied in 
June and Aug at 123 kg per pen for each application. 
3Calculated using the NASEM (2016) net energy, protein, and P retention 
equations.  
4Calculated as nutrient intake –retention. 
5Manure N or P with correction for soil N or P. Soil nutrient concentration 
evaluated before and after SUMMER experiment to account for all 
nutrients remaining or in excess on the pen surface. 
6Calculated as nutrient (N or P) lost divided by nutrient (N or P) excretion.  
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APPENDIX A: BIOCHAR ON NUTRIENT LOSS FROM CATTLE MANURE 

Sperber, J. L., T. Spore, G. E. Erickson, and A. K. Watson. 2021. Evaluation of biochar 

on nutrient loss from fresh cattle manure. Neb. Beef Cattle Report. pp. 93-94.  

Summary with Implications   
 

An experiment was conducted to evaluate the impact of biochar and time on 

manure nutrient retention. Pans were used to simulate feedlot pens with 10 replications 

per treatment. Biochar was included at 0, 5, or 10% of manure dry matter with 30 and 60 

d durations to evaluate pan contents over time. There was a 13-percentage unit increase 

in organic matter losses from day 30 to 60 for pans without biochar, and a 3-percentage 

unit increase for pans containing biochar.  The least nitrogen loss was measured on the 

pans without biochar harvested at 30 d. Pans harvested at 60 d all had similar nitrogen 

loss. Phosphorus losses were not impacted by treatment while potassium losses decreased 

over time but were not impacted by biochar treatment. In this study biochar included at 5 

and 10% of manure dry matter limited carbon losses but did not impact manure nutrient 

retention of nitrogen, phosphorus, or potassium. 

Procedure 

A simulated feedlot pen study was conducted using 60 aluminum pans (10 × 9 × 2 

inches) to represent the hard interface of a feedlot pen. Each pan was weighed and filled 

with a 60:40 blend of feedlot top soil and manure, respectively. Biochar was included at 

0, 5, and 10% of manure dry matter (DM), and all contents of the pan were mixed to 

mimic the hoof action of cattle in a feedlot pen. A 3 × 2 factorial design was utilized, 

with biochar inclusion at 0, 5, or 10% of manure DM and samples harvested at 30 and 60 

days with 10 replications per treatment. All pans were randomized onto 2 screened, metal 

shelving units located in a temperature-controlled room in the University of Nebraska-
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Lincoln Metabolism Lab (Lincoln, NE). Biochar, manure, and soil samples were 

analyzed for DM and nutrient content prior to study initiation.  

Biochar was provided by High Plains Biochar (Laramie, WY) and was sourced 

from forest wood waste, primarily ponderosa pine trees.  Biochar had a DM content of 

97.5%, and on a DM basis carbon (C) content was 75.4%, with a surface area of 306 

m2/g, bulk density of 129.8 kg/m3, and pH of 8.45. Biochar particle size measured < 2-

mm for 72.3% of total sample, 22.7% of sample measured between 2- and 4-mm and the 

remainder measured >4-mm. Manure was sourced from a commercial feedlot near Mead, 

NE, that houses cattle in covered pens with slatted flooring. Slatted flooring allows for 

elevated manure and urine capture, with no soil contamination, thereby producing a 

liquified manure slurry. Nutrient content of manure at a DM of 10.4% measured 72.8% 

OM, 5.87% N, 1.33% P, and 2.66% potassium (K) on a DM basis.  

Original intent was to harvest thirty pans at 30 d after trial initiation and thirty 

pans at 60 d. Due to UNL research restrictions onset from COVID-19, thirty pans 

selected for harvest at 30 d were placed in plastic bags (to avoid cross-contamination), 

placed in a 4°C freezer, and were ground at a later date. Thirty pans selected for 60 d 

harvest, were harvested on d 52 of study and ground immediately, due to Phase 4 

restrictions on UNL research.  

 At time of harvest, pans were weighed, and contents were ground through a 1-

mm screen. Ground samples were sent to Ward Laboratories, Inc. (Kearney, NE), and 

analyzed for DM, OM, and nutrient (N, P, K specifically) content. Data were analyzed 

using the MIXED procedure of SAS (SAS Institute, Inc., Cary, N.C.) with pan as the 

experimental unit.  
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Results  

 Nutrient losses from the manure:soil mixture are reported as a % of nutrients 

weighed into each pan on d 1 (Table 1). There was an interaction (P = 0.05) between 

biochar inclusion and day for OM loss.  At the 30-day harvest there were no differences 

between treatments (9.12% OM loss).  The biochar treatment was effective at limiting 

OM losses at 60 days, with the 10% biochar treatment being most effective.  The pans 

with no biochar had an increase in OM losses of 13-percentage units from day 30 to day 

60 while the pans with biochar had a 3-percentage unit increase. 

A biochar inclusion by day interaction (P < 0.01) was observed for nitrogen 

losses.  With no biochar, N losses increased 7 percentage units from day 30 to day 60.  

With biochar inclusion (both the 5 and 10% biochar treatments) N losses did not increase 

from day 30 to day 60.  The least N loss was measured on the 0% biochar pans harvested 

at day 30 while the greatest N losses were for 10% biochar pans harvested at day 30. 

Phosphorus losses were not impacted by treatment (P ≥ 0.37) and averaged 

5.98%. There was an effect of day for K (P < 0.01) with pans harvested at 30 d having 

greater K losses compared to pans harvested at 60 d.  Biochar inclusion did not impact K 

losses (P = 0.53).  The quantities and losses of both P and K were small and there is a 

challenge in accurately measuring these small quantities.   

 Results from this study suggest that biochar, included at 5 or 10% of manure DM 

content, is not a sufficient method to improve nutrient capture from cattle manure. These 

results are dissimilar to previous literature on the use of biochar inclusion to capture 

manure nutrients although previous studies focused on manure from animals other than 

cattle.  One primary difference in this study is that manure was collected from covered 
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feedlot pens with slatted floors, thus DM content of the manure was less than 20% and N 

content was over 5% of DM.  Increasing the amount of biochar added may impact the 

results but could also become expensive, depending on the type and source of biochar. 

 
  



 121 

 
 
 
 

Table 1. Simple effects of biochar inclusion and time on manure nutrient loss  
 Biochar 0% Biochar 5% Biochar 10% SEM P-Value 
 30d 60d 30d 60d 30d 60d  Inclusion Day Inclusion × 

Day 
OM lost, %   7.50b 20.6a   9.94b 14.0ab   9.91b 11.8b 2.38 0.40 <0.01   0.05 

N lost, % 26.3b 33.3a 34.8a 32.7a 37.9a 33.2a 1.85 0.01   0.96 <0.01 
P lost, %   3.16   4.75    8.25   4.00   9.75   5.94 2.93 0.42  0.37   0.54 
K lost, %   6.36ab   1.26bc  10.6a   0.22c   9.34a   3.06bc 2.15 0.53 <0.01   0.44 
abcWithin a row, least squares means without a common superscript differ (P < 0.05).   
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